• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.023 seconds

A Study on the Land Change Detection and Monitoring Using High-Resolution Satellite Images and Artificial Intelligence: A Case Study of Jeongeup City (고해상도 위성영상과 인공지능을 활용한 국토 변화탐지 및 모니터링 연구: 실증대상 지역인 정읍시를 중심으로)

  • Cho, Nahye;Lee, Jungjoo;Kim, Hyundeok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.107-121
    • /
    • 2023
  • In order to acquire a wide range of land that changes in real time and quickly and accurately grasp it, we plan to utilize the recently released high-resolution S.Korea's satellite image data and artificial intelligence (AI). Compared to existing satellite images, the spectral and periodic resolutions of S.Korea's satellite are higher, making them a more suitable data source for periodically monitoring changes in land. Therefore, this study aims to acquire S.Korea's satellite, select 8 types of objects to detect land changes, construct data sets for them, and apply AI models to analyze them. In order to confirm the optimal model and variable conditions for detecting 8 types of objects of various types, several experiments are performed and AI-based image analysis is technically reviewed.

Performance Analysis of Speech Recognition Model based on Neuromorphic Architecture of Speech Data Preprocessing Technique (음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반 음성 인식 모델의 성능 분석)

  • Cho, Jinsung;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2022
  • SNN (Spiking Neural Network) operating in neuromorphic architecture was created by mimicking human neural networks. Neuromorphic computing based on neuromorphic architecture requires relatively lower power than typical deep learning techniques based on GPUs. For this reason, research to support various artificial intelligence models using neuromorphic architecture is actively taking place. This paper conducted a performance analysis of the speech recognition model based on neuromorphic architecture according to the speech data preprocessing technique. As a result of the experiment, it showed up to 84% of speech recognition accuracy performance when preprocessing speech data using the Fourier transform. Therefore, it was confirmed that the speech recognition service based on the neuromorphic architecture can be effectively utilized.

A Study on a car Insurance purchase Prediction Using Two-Class Logistic Regression and Two-Class Boosted Decision Tree

  • AN, Su Hyun;YEO, Seong Hee;KANG, Minsoo
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • This paper predicted a model that indicates whether to buy a car based on primary health insurance customer data. Currently, automobiles are being used to land transportation and living, and the scope of use and equipment is expanding. This rapid increase in automobiles has caused automobile insurance to emerge as an essential business target for insurance companies. Therefore, if the car insurance sales are predicted and sold using the information of existing health insurance customers, it can generate continuous profits in the insurance company's operating performance. Therefore, this paper aims to analyze existing customer characteristics and implement a predictive model to activate advertisements for customers interested in such auto insurance. The goal of this study is to maximize the profits of insurance companies by devising communication strategies that can optimize business models and profits for customers. This study was conducted through the Microsoft Azure program, and an automobile insurance purchase prediction model was implemented using Health Insurance Cross-sell Prediction data. The program algorithm uses Two-Class Logistic Regression and Two-Class Boosted Decision Tree at the same time to compare two models and predict and compare the results. According to the results of this study, when the Threshold is 0.3, the AUC is 0.837, and the accuracy is 0.833, which has high accuracy. Therefore, the result was that customers with health insurance could induce a positive reaction to auto insurance purchases.

An Exploratory Approach to Discovering Salary-Related Wording in Job Postings in Korea

  • Ha, Taehyun;Coh, Byoung-Youl;Lee, Mingook;Yun, Bitnari;Chun, Hong-Woo
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.86-95
    • /
    • 2022
  • Online recruitment websites discuss job demands in various fields, and job postings contain detailed job specifications. Analyzing this text can elucidate the features that determine job salaries. Text embedding models can learn the contextual information in a text, and explainable artificial intelligence frameworks can be used to examine in detail how text features contribute to the models' outputs. We collected 733,625 job postings using the WORKNET API and classified them into low, mid, and high-range salary groups. A text embedding model that predicts job salaries based on the text in job postings was trained with the collected data. Then, we applied the SHapley Additive exPlanations (SHAP) framework to the trained model and discovered the significant words that determine each salary class. Several limitations and remaining words are also discussed.

Resource Metric Refining Module for AIOps Learning Data in Kubernetes Microservice

  • Jonghwan Park;Jaegi Son;Dongmin Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1545-1559
    • /
    • 2023
  • In the cloud environment, microservices are implemented through Kubernetes, and these services can be expanded or reduced through the autoscaling function under Kubernetes, depending on the service request or resource usage. However, the increase in the number of nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function make it very difficult for system administrators to conduct operations. Artificial Intelligence for IT Operations (AIOps) supports resource management for cloud services through AI and has attracted attention as a solution to these problems. For example, after the AI model learns the metric or log data collected in the microservice units, failures can be inferred by predicting the resources in future data. However, it is difficult to construct data sets for generating learning models because many microservices used for autoscaling generate different metrics or logs in the same timestamp. In this study, we propose a cloud data refining module and structure that collects metric or log data in a microservice environment implemented by Kubernetes; and arranges it into computing resources corresponding to each service so that AI models can learn and analogize service-specific failures. We obtained Kubernetes-based AIOps learning data through this module, and after learning the built dataset through the AI model, we verified the prediction result through the differences between the obtained and actual data.

A Study on the Bleeding Detection Using Artificial Intelligence in Surgery Video (수술 동영상에서의 인공지능을 사용한 출혈 검출 연구)

  • Si Yeon Jeong;Young Jae Kim;Kwang Gi Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.211-217
    • /
    • 2023
  • Recently, many studies have introduced artificial intelligence systems in the surgical process to reduce the incidence and mortality of complications in patients. Bleeding is a major cause of operative mortality and complications. However, there have been few studies conducted on detecting bleeding in surgical videos. To advance the development of deep learning models for detecting intraoperative hemorrhage, three models have been trained and compared; such as, YOLOv5, RetinaNet50, and RetinaNet101. We collected 1,016 bleeding images extracted from five surgical videos. The ground truths were labeled based on agreement from two specialists. To train and evaluate models, we divided the datasets into training data, validation data, and test data. For training, 812 images (80%) were selected from the dataset. Another 102 images (10%) were used for evaluation and the remaining 102 images (10%) were used as the evaluation data. The three main metrics used to evaluate performance are precision, recall, and false positive per image (FPPI). Based on the evaluation metrics, RetinaNet101 achieved the best detection results out of the three models (Precision rate of 0.99±0.01, Recall rate of 0.93±0.02, and FPPI of 0.01±0.01). The information on the bleeding detected in surgical videos can be quickly transmitted to the operating room, improving patient outcomes.

Analysis of Examining Facotrs Affecting the Intention to Accept Artificial Intelligence Technology by Creative Artists and Cultural Practioners (문화예술 종사자의 인공지능 기술 수용 의도에 영향을 미치는 요인들에 대한 연구)

  • Sang-Wook Park;Heeyoung Cho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.7-14
    • /
    • 2024
  • This study intendss to prepare specific support measures for cultural industry practioners and artists to respond to the development of artificial intelligence (AI) based on how they understand and accept AI. To this end, the acceptance attitude of practioners in the arts and cultural sectors toward AI technology was investigated based on the technology acceptance models and theories. The results show that, firstly, personal characteristics and service characteristics, which are influencing factors, have an effect on perceived usefulness, perceived ease of use, and intention to use AI services. Secondly, when there are perceived ease of use and perceived usefulness in AI services, innovative and effective personal characteristics reinforce the intention to use artificial intelligence services. It is expected that this study can be used as a reference for establishing policy measures to support cultural artists related to AI technology.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.