• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.03 seconds

Identification and risk management related to construction projects

  • Boughaba, Amina;Bouabaz, Mohamed
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.445-465
    • /
    • 2020
  • This paper presents a study conducted with the aim of developing a model of tendering based on a technique of artificial intelligence by managing and controlling the factors of success or failure of construction projects through the evaluation of the process of invitation to tender. Aiming to solve this problem, analysis of the current environment based on SWOT (Strengths, Weaknesses, Opportunities, and Threats) is first carried out. Analysis was evaluated through a case study of the construction projects in Algeria, to bring about the internal and external factors which affect the process of invitation to tender related to the construction projects. This paper aims to develop a mean to identify threats-opportunities and strength-weaknesses related to the environment of various national construction projects, leading to the decision on whether to continue the project or not. Following a SWOT analysis, novel artificial intelligence models in forecasting the project status are proposed. The basic principal consists in interconnecting the different factors to model this phenomenon. An artificial neural network model is first proposed, followed by a model based on fuzzy logic. A third model resulting from the combination of the two previous ones is developed as a hybrid model. A simulation study is carried out to assess performance of the three models showing that the hybrid model is better suited in forecasting the construction project status than RNN (recurrent neural network) and FL (fuzzy logic) models.

Performance Analysis of Building Change Detection Algorithm (연합학습 기반 자치구별 건물 변화탐지 알고리즘 성능 분석)

  • Kim Younghyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.233-244
    • /
    • 2023
  • Although artificial intelligence and machine learning technologies have been used in various fields, problems with personal information protection have arisen based on centralized data collection and processing. Federated learning has been proposed to solve this problem. Federated learning is a process in which clients who own data in a distributed data environment learn a model using their own data and collectively create an artificial intelligence model by centrally collecting learning results. Unlike the centralized method, Federated learning has the advantage of not having to send the client's data to the central server. In this paper, we quantitatively present the performance improvement when federated learning is applied using the building change detection learning data. As a result, it has been confirmed that the performance when federated learning was applied was about 29% higher on average than the performance when it was not applied. As a future work, we plan to propose a method that can effectively reduce the number of federated learning rounds to improve the convergence time of federated learning.

Real-Time Arbitrary Face Swapping System For Video Influencers Utilizing Arbitrary Generated Face Image Selection

  • Jihyeon Lee;Seunghoo Lee;Hongju Nam;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • This paper introduces a real-time face swapping system that enables video influencers to swap their faces with arbitrary generated face images of their choice. The system is implemented as a Django-based server that uses a REST request to communicate with the generative model,specifically the pretrained stable diffusion model. Once generated, the generated image is displayed on the front page so that the influencer can decide whether to use the generated face or not, by clicking on the accept button on the front page. If they choose to use it, both their face and the generated face are sent to the landmark extraction module to extract the landmarks, which are then used to swap the faces. To minimize the fluctuation of landmarks over time that can cause instability or jitter in the output, a temporal filtering step is added. Furthermore, to increase the processing speed the system works on a reduced set of the extracted landmarks.

Captive Portal Recommendation System Based on Word Embedding Model (단어 임베딩 모델 기반 캡티브 포털 메뉴 추천 시스템)

  • Dong-Hun Yeo;Byung-Il Hwang;Dong-Ju Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.11-12
    • /
    • 2023
  • 본 논문에서는 상점 내 캡티브 포털을 활용하여 수집된 주문 정보 데이터를 바탕으로 사용자가 선호하는 메뉴를 추천하는 시스템을 제안한다. 이 시스템은 식품 관련 공공 데이터셋으로 학습된 단어 임베딩 모델(Word Embedding Model)로 메뉴명을 벡터화하여 그와 유사한 벡터를 가지는 메뉴를 추천한다. 이 기법은 캡티브 포털에서 수집되는 데이터 특성상 사용자의 개인정보가 비식별화 되고 선택 항목에 대한 정보도 제한되므로 기존의 단어 임베딩 모델을 추천 시스템에 적용하는 경우에 비해 유리하다. 본 논문에서는 실제 동일한 시스템을 사용하는 상점들의 구매 기록 데이터를 활용한 검증 데이터를 확보하여 제안된 추천 시스템이 Precision@k(k=3) 구매 예측에 유의미함을 보인다.

  • PDF

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

Deep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cells

  • Xu, Peng;Qin, Xiao;Zhu, Honglei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.259-272
    • /
    • 2022
  • The branch of electronics that uses an organic solar cell or conductive organic polymers in order to yield electricity from sunlight is called photovoltaic. Regarding this crucial issue, an artificial intelligence-based predictor is presented to investigate the vibrational behavior of the organic solar cell. In addition, the generalized differential quadrature method (GDQM) is utilized to extract the results. The validation examination is done to confirm the credibility of the results. Then, the deep neural network with fully connected layers (DNN-FCL) is trained by means of Adam optimization on the dataset whose members are the vibration response of the design-points. By determining the optimum values for the biases along with weights of DNN-FCL, one can predict the vibrational characteristics of any organic solar cell by knowing the properties defined as the inputs of the mentioned DNN. To assess the ability of the proposed artificial intelligence-based model in prediction of the vibrational response of the organic solar cell, the authors monitored the mean squared error in different steps of the training the DNN-FCL and they observed that the convergency of the results is excellent.

Development and Effectiveness of an AI Thinking-based Education Program for Enhancing AI Literacy (인공지능 리터러시 신장을 위한 인공지능 사고 기반 교육 프로그램 개발 및 효과)

  • Lee, Jooyoung;Won, Yongho;Shin, Yoonhee
    • Journal of Engineering Education Research
    • /
    • v.26 no.3
    • /
    • pp.12-19
    • /
    • 2023
  • The purpose of this study is to develop the Artificial Intelligence thinking-based education program for improving AI literacy and verify its effectiveness for beginner. This program consists of 17 sessions, was designed according to the "ABCDE" model and is a project-based program. This program was conducted on 51 first-year middle school students and 36 respondents excluding missing values were analyzed in R language. The effect of this program on ethics, understanding, social competency, execution plan, data literacy, and problem solving of AI literacy is statistically significant and has very large practical significance. According to the result of this study, this program provided learners experiencing Artificial Intelligence education for the first time with Artificial Intelligence concepts and principles, collection and analysis of information, and problem-solving processes through application in real life, and served as an opportunity to enhance AI literacy. In addition, education program to enhance AI literacy should be designed based on AI thinking.

Artificial Intelligence-Based High School Course and University Major Recommendation System for Course-Related Career Exploration (교과 연계 진로 탐색을 위한 인공지능 기반 고교 선택교과 및 대학 학과 추천 시스템)

  • Baek, Jinheon;Kim, Hayeon;Kwon, Kiwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • Recent advances in the 4th Industrial Revolution have accelerated the change of the working environment, such that the paradigm of education has been shifted in accordance with career education including the free semester system and the high school credit system. While the purpose of those systems is students' self-motivated career exploration, educational limitations for teachers and students exist due to the rapid change of the information on education. Also, education technology research to tackle these limitations is relatively insufficient. To this end, this study first defines three requirements that education technologies for the career education system should consider. Then, through data-driven artificial intelligence technology, this study proposes a data system and an artificial intelligence recommendation model that incorporates the topics for career exploration, courses, and majors in one scheme. Finally, this study demonstrates that the set-based artificial intelligence model shows satisfactory performances on recommending career education contents such as courses and majors, and further confirms that the actual application of this system in the educational field is acceptable.

Classification of Whole Body Bone Scan Image with Bone Metastasis using CNN-based Transfer Learning (CNN 기반 전이학습을 이용한 뼈 전이가 존재하는 뼈 스캔 영상 분류)

  • Yim, Ji Yeong;Do, Thanh Cong;Kim, Soo Hyung;Lee, Guee Sang;Lee, Min Hee;Min, Jung Joon;Bom, Hee Seung;Kim, Hyeon Sik;Kang, Sae Ryung;Yang, Hyung Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1224-1232
    • /
    • 2022
  • Whole body bone scan is the most frequently performed nuclear medicine imaging to evaluate bone metastasis in cancer patients. We evaluated the performance of a VGG16-based transfer learning classifier for bone scan images in which metastatic bone lesion was present. A total of 1,000 bone scans in 1,000 cancer patients (500 patients with bone metastasis, 500 patients without bone metastasis) were evaluated. Bone scans were labeled with abnormal/normal for bone metastasis using medical reports and image review. Subsequently, gradient-weighted class activation maps (Grad-CAMs) were generated for explainable AI. The proposed model showed AUROC 0.96 and F1-Score 0.90, indicating that it outperforms to VGG16, ResNet50, Xception, DenseNet121 and InceptionV3. Grad-CAM visualized that the proposed model focuses on hot uptakes, which are indicating active bone lesions, for classification of whole body bone scan images with bone metastases.

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF