Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.3
/
pp.449-458
/
2023
Artificial Intelligence is providing convenience in various fields using big data and deep learning technologies. However, deep learning technology is highly vulnerable to adversarial examples, which can cause misclassification of classification models. This study proposes a method to detect and purification various adversarial attacks using StarGAN. The proposed method trains a StarGAN model with added Categorical Entropy loss using adversarial examples generated by various attack methods to enable the Discriminator to detect adversarial examples and the Generator to purification them. Experimental results using the CIFAR-10 dataset showed an average detection performance of approximately 68.77%, an average purification performance of approximately 72.20%, and an average defense performance of approximately 93.11% derived from restoration and detection performance.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.538-540
/
2021
In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.
Xiaohua Ding;Moein Bahadori;Mahdi Hasanipanah;Rini Asnida Abdullah
Geomechanics and Engineering
/
v.33
no.6
/
pp.567-581
/
2023
The prediction and achievement of a proper rock fragmentation size is the main challenge of blasting operations in surface mines. This is because an optimum size distribution can optimize the overall mine/plant economics. To this end, this study attempts to develop four improved artificial intelligence models to predict rock fragmentation through cascaded forward neural network (CFNN) and radial basis function neural network (RBFNN) models. In this regards, the CFNN was trained by the Levenberg-Marquardt algorithm (LMA) and Conjugate gradient backpropagation (CGP). Further, the RBFNN was optimized by the Dragonfly Algorithm (DA) and teaching-learning-based optimization (TLBO). For developing the models, the database required was collected from the Midouk copper mine, Iran. After modeling, the statistical functions were computed to check the accuracy of the models, and the root mean square errors (RMSEs) of CFNN-LMA, CFNN-CGP, RBFNN-DA, and RBFNN-TLBO were obtained as 1.0656, 1.9698, 2.2235, and 1.6216, respectively. Accordingly, CFNN-LMA, with the lowest RMSE, was determined as the model with the best prediction results among the four examined in this study.
Kim, Sooyoung;Kim, Hyung-Jun;Kim, Boram;Yoon, Kwang Seok
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.328-328
/
2021
최근 전 지구적인 기후변화의 영향은 강우량의 집중을 야기하며 홍수피해의 규모를 증가시키는 영향을 끼친다. 특히, 아세안 국가들은 해수면 상승, 태풍 및 집중호우에 의한 침수피해 빈발로 최소 2,000만명이 영향을 받고 있다. 국내의 홍수예보모형을 수출하여 아세안 국가에 구축하고 있으나 통신 시설이 불안정하여 중앙제어 방식의 기존의 홍수예보시스템만으로는 긴급상황에 대한 대처가 부족할 수 있다. 따라서 본 연구에서는 하나의 관측소에서 수위, 강우의 관측과 홍수예측, 경보까지 한번에 가능한 관측소를 개발하기 위해 관측된 수위와 강우자료를 활용하여 인공지능기반의 하천수위예측 모형을 개발하였다. 목표 리드타임은 30분에서 6시간으로 설정하였으며 모형은 Tensorflow로 구축하였다. 시계열 자료의 예측에 적합한 LSTM 기법을 적용하였다. 연구의 대상지역은 건설연의 계측시험유역인 설마천유역으로 하였으며 학습에는 2009년부터 2020년까지의 10분 단위 수위 및 강우량자료를 활용하였다. 연구결과 설마천 유역은 규모가 작고 도달시간이 짧아 1시간 후 예측까지는 높은 정확도를 나타냈으나 3시간 이상의 예측결과는 다소 낮게 평가되었다. 다만, 비상상황에서 통신이 두절된 상황에서 위급하게 대피를 위해 홍수경보를 발령하는데는 활용이 가능 할 것으로 판단된다.
의료영상기반의 인공지능 연구는 질환의 조기진단 및 예측 분야에 눈부신 기술발전이 되어왔다. 장기 섬유증은 만성 염증성 질환의 질병 진행을 특징짓고 전 세계적으로 모든 원인으로 인한 사망률의 45%에 기여하며, 그중 간 섬유증은 주로 삶의 질과 예후를 결정한다. 해당 질환은 임상 현장에서 혈액데이터 분석 그리고 간생검을 통해 진단을 하고 있으나 최근 의료영상 분석을 통해 진단에 활용하고 있는 추세이다. 본 논문에서는 인공지능을 기반으로 하여, 간 섬유화를 진단하기 위해 MRI영상을 학습하여 질환에 대한 중증도 진단을 돕는 인공지능 모델을 제시하고자 한다. 이를 위해 인공지능 모델을 개발하는 과정과 그 결과를 보인다. 본 논문에서 제시한 모델을 통해 간 섬유화를 빠르게 진단할 수 있을 것으로 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.327-329
/
2023
순서 의존적 준비시간을 갖는 단일기계 생산라인에서 주어진 작업들을 효율적으로 수행하기 위해서는 최대한 동일하거나 유사한 유형의 작업물들을 연속적으로 처리하여 다음 번 작업물의 처리를 시작하기 전에 발생하는 준비시간을 최소화하여야 한다. 따라서, 대기 중인 것들 중 기계에 투입할 작업물을 적절히 선택하는 것이 중요하며, 이를 위해 작업 배정 규칙과 같은 휴리스틱을 사용할 수도 있지만, 이러한 해법들은 일반적으로 다양한 상황을 동적으로 고려하지 못하는 한계점을 갖는다. 따라서, 본 논문에서는 상용 3D 시뮬레이션 소프트웨어인 FlexSim을 사용하여 모형을 구성한 다음, 강화학습을 적용하여 대기 중인 작업물 중 최적의 후보를 선택하기 위한 작업 배정 모형을 개발하고자 한다. 세부적으로는 강화학습의 상태 및 보상을 달리 설정하면서 학습된 모형의 성능을 비교하고자 한다. 실험 결과를 통해 적절한 시뮬레이션 모형 구성과 강화학습의 파라미터 변수들을 적절히 조합하여 적절한 작업 배정 모형의 개발이 가능하다는 점을 알 수 있었다.
Amid the flood of data, social network analysis is beneficial in searching for its hidden context and verifying several pieces of information. This can be used for detecting the spread model of infectious diseases, methods of preventing infectious diseases, mining of small groups and so forth. In addition, community detection is the most studied topic in social network analysis using graph analysis methods. The objective of this study is to examine signed attributed social networks and identify the maximal balanced cliques that are both absolute and fair. In the same vein, the purpose is to ensure fairness in complex networks, overcome the "information cocoon" bottleneck, and reduce the occurrence of "group polarization" in social networks. Meanwhile, an empirical study is presented in the experimental section, which uses the personal information of 77 employees of a research company and the trust relationships at the professional level between employees to mine some small groups with the possibility of "group polarization." Finally, the study provides suggestions for managers of the company to align and group new work teams in an organization.
Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.3
/
pp.670-684
/
2024
3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.
With the advancement of Information and Communication Technologies (ICT) and Artificial Intelligence (AI), the metaverse has emerged as a transformative model across various sectors, offering a three-dimensional virtual world where activities mirroring the real world occur. This study delves into the significant factors influencing fashion brand companies' investments in the metaverse, an evolved concept from Virtual Reality (VR) that extends beyond gaming to include real-life activities through avatars. This study highlights the surge in virtual fashion engagements, as evidenced by increased avatar updates and purchases of digital fashion items on platforms like Roblox. Luxury brands are steadily entering the metaverse indicating a new revenue stream within the fashion industry. This study employs a mixed-methods approach, integrating text mining and interviews to identify key factors for fashion companies considering metaverse investments. By proposing strategies based on these findings, this study not only enriches academic discourse in fashion, e-commerce, and information systems but also serves as a guideline for fashion companies aiming to navigate the burgeoning digital market, contributing to the generation of new revenue streams in the fashion sector.
The increase in the use of artificial intelligence (AI) in the workplace has introduced changes to traditional working environments. However, these are changes not only to employee productivity but also to how employees feel and think about their work. Based on prior research that has suggested connections between employees' perceptions of AI and their emotions and thoughts at work, the present study tested a moderated mediation model in which the perception of AI opportunity is indirectly related to job insecurity via employee hope, with tenure as a moderator. Data obtained from 290 Korean full-time employees illustrated that the perception of AI opportunity was negatively related to job insecurity through hope acting as a mediator. In addition, this indirect relationship was found to be dependent on the moderating role of tenure. Specifically, at lower levels of tenure, the aforementioned indirect relationship was statistically significant, but at higher levels of tenure, this indirect relationship was no longer found to be statistically significant. The implications, limitations, and future research directions of this study are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.