• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.028 seconds

A Study on the Deep Learning-Based Textbook Questionnaires Detection Experiment (딥러닝 기반 교재 문항 검출 실험 연구)

  • Kim, Tae Jong;Han, Tae In;Park, Ji Su
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.513-520
    • /
    • 2021
  • Recently, research on edutech, which combines education and technology in the e-learning field called learning, education and training, has been actively conducted, but it is still insufficient to collect and utilize data tailored to individual learners based on learning activity data that can be automatically collected from digital devices. Therefore, this study attempts to detect questions in textbooks or problem papers using artificial intelligence computer vision technology that plays the same role as human eyes. The textbook or questionnaire item detection model proposed in this study can help collect, store, and analyze offline learning activity data in connection with intelligent education services without digital conversion of textbooks or questionnaires to help learners provide personalized learning services even in offline learning.

AI-Based Particle Position Prediction Near Southwestern Area of Jeju Island (AI 기법을 활용한 제주도 남서부 해역의 입자추적 예측 연구)

  • Ha, Seung Yun;Kim, Hee Jun;Kwak, Gyeong Il;Kim, Young-Taeg;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.72-81
    • /
    • 2022
  • Positions of five drifting buoys deployed on August 2020 near southwestern area of Jeju Island and numerically predicted velocities were used to develop five Artificial Intelligence-based models (AI models) for the prediction of particle tracks. Five AI models consisted of three machine learning models (Extra Trees, LightGBM, and Support Vector Machine) and two deep learning models (DNN and RBFN). To evaluate the prediction accuracy for six models, the predicted positions from five AI models and one numerical model were compared with the observed positions from five drifting buoys. Three skills (MAE, RMSE, and NCLS) for the five buoys and their averaged values were calculated. DNN model showed the best prediction accuracy in MAE, RMSE, and NCLS.

Synthesis of T2-weighted images from proton density images using a generative adversarial network in a temporomandibular joint magnetic resonance imaging protocol

  • Chena, Lee;Eun-Gyu, Ha;Yoon Joo, Choi;Kug Jin, Jeon;Sang-Sun, Han
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.393-398
    • /
    • 2022
  • Purpose: This study proposed a generative adversarial network (GAN) model for T2-weighted image (WI) synthesis from proton density (PD)-WI in a temporomandibular joint(TMJ) magnetic resonance imaging (MRI) protocol. Materials and Methods: From January to November 2019, MRI scans for TMJ were reviewed and 308 imaging sets were collected. For training, 277 pairs of PD- and T2-WI sagittal TMJ images were used. Transfer learning of the pix2pix GAN model was utilized to generate T2-WI from PD-WI. Model performance was evaluated with the structural similarity index map (SSIM) and peak signal-to-noise ratio (PSNR) indices for 31 predicted T2-WI (pT2). The disc position was clinically diagnosed as anterior disc displacement with or without reduction, and joint effusion as present or absent. The true T2-WI-based diagnosis was regarded as the gold standard, to which pT2-based diagnoses were compared using Cohen's ĸ coefficient. Results: The mean SSIM and PSNR values were 0.4781(±0.0522) and 21.30(±1.51) dB, respectively. The pT2 protocol showed almost perfect agreement(ĸ=0.81) with the gold standard for disc position. The number of discordant cases was higher for normal disc position (17%) than for anterior displacement with reduction (2%) or without reduction (10%). The effusion diagnosis also showed almost perfect agreement(ĸ=0.88), with higher concordance for the presence (85%) than for the absence (77%) of effusion. Conclusion: The application of pT2 images for a TMJ MRI protocol useful for diagnosis, although the image quality of pT2 was not fully satisfactory. Further research is expected to enhance pT2 quality.

Comparative Study on Seismic Fragility Curve Derivation Methods of Buried Pipeline Using Finite Element Analysis (유한요소 해석을 활용한 매설 배관의 지진 취약도 곡선 도출 기법 비교)

  • Lee, Seungjun;Yoon, Sungsik;Song, Hyeonsung;Lee, Jinmi;Lee, Young-Joo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.213-220
    • /
    • 2023
  • Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.

3D Medical Image Data Augmentation for CT Image Segmentation (CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법)

  • Seonghyeon Ko;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.85-92
    • /
    • 2023
  • Deep learning applications are increasingly being leveraged for disease detection tasks in medical imaging modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Most data-centric deep learning challenges necessitate the use of supervised learning methodologies to attain high accuracy and to facilitate performance evaluation through comparison with the ground truth. Supervised learning mandates a substantial amount of image and label sets, however, procuring an adequate volume of medical imaging data for training is a formidable task. Various data augmentation strategies can mitigate the underfitting issue inherent in supervised learning-based models that are trained on limited medical image and label sets. This research investigates the enhancement of a deep learning-based rib fracture segmentation model and the efficacy of data augmentation techniques such as left-right flipping, rotation, and scaling. Augmented dataset with L/R flipping and rotations(30°, 60°) increased model performance, however, dataset with rotation(90°) and ⨯0.5 rescaling decreased model performance. This indicates the usage of appropriate data augmentation methods depending on datasets and tasks.

Design of Heating Supply System for Facility House using Industrial Chimney Waste Heat (산업용 굴뚝 폐열을 활용한 시설하우스 난방 공급 시스템 설계)

  • Chang-Jo Lee;Jin-Gwang Koh;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.661-668
    • /
    • 2023
  • A large amount of fuel is required for heating the agricultural facility house, and many farmhouses are experiencing the burden of heating costs due to the recent increase in fuel prices. This paper proposes a supply system that supports heating of agricultural facility houses located nearby by utilizing industrial chimney waste heat, and analyzes the application and effect of a heating cost reduction model. The system was designed based on the chimney waste heat system, and the facility house heating cost reduction model was applied and effect analysis was performed based on the proposed model. It was confirmed that the high-temperature waste heat from the chimney can be used to supply heating to facility houses in nearby farms. If heating is supplied to large-scale facility houses near industrial complexes, it is expected to contribute to improve productivity and competitiveness of domestic farms.

AI Security Vulnerabilities in Fully Unmanned Stores: Adversarial Patch Attacks on Object Detection Model & Analysis of the Defense Effectiveness of Data Augmentation (완전 무인 매장의 AI 보안 취약점: 객체 검출 모델에 대한 Adversarial Patch 공격 및 Data Augmentation의 방어 효과성 분석)

  • Won-ho Lee;Hyun-sik Na;So-hee Park;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.245-261
    • /
    • 2024
  • The COVID-19 pandemic has led to the widespread adoption of contactless transactions, resulting in a noticeable increase in the trend towards fully unmanned stores. In such stores, all operational processes are automated, primarily using artificial intelligence (AI) technology. However, this AI technology has several security vulnerabilities, which can be critical in the environment of fully unmanned stores. This paper analyzes the security vulnerabilities that AI-based fully unmanned stores may face, focusing particularly on the object detection model YOLO, demonstrating that Hiding Attacks and Altering Attacks using adversarial patches are possible. It is confirmed that objects with adversarial patches attached may not be recognized by the detection model or may be incorrectly recognized as other objects. Furthermore, the paper analyzes how Data Augmentation techniques can mitigate security threats by providing a defensive effect against adversarial patch attacks. Based on these results, we emphasize the need for proactive research into defensive measures to address the inherent security threats in AI technology used in fully unmanned stores.

Gaussian Blending: Improved 3D Gaussian Splatting for Model Light-Weighting and Deep Learning-Based Performance Enhancement

  • Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.23-32
    • /
    • 2024
  • NVS (Novel View Synthesis) is a field in computer vision that reconstructs new views of a scene from a set of input views. Real-time rendering and high performance are essential for NVS technology to be effectively utilized in various applications. Recently, 3D-GS (3D Gaussian Splatting) has gained popularity due to its faster training and inference times compared to those of NeRF (Neural Radiance Fields)-based methodologies. However, since 3D-GS reconstructs a 3D (Three-Dimensional) scene by splitting and cloning (Density Control) Gaussian points, the number of Gaussian points continuously increases, causing the model to become heavier as training progresses. To address this issue, we propose two methodologies: 1) Gaussian blending, an improved density control methodology that removes unnecessary Gaussian points, and 2) a performance enhancement methodology using a depth estimation model to minimize the loss in representation caused by the blending of Gaussian points. Experiments on the Tanks and Temples Dataset show that the proposed methodologies reduce the number of Gaussian points by up to 4% while maintaining performance.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

An Intelligent CCTV-Based Emergency Detection System for Rooftop Access Control Problems (옥상 출입 통제 문제 해결을 위한 지능형 CCTV 기반 비상 상황 감지 시스템 제안)

  • Yeeun Kang;Soyoung Ham;Seungchae Joa;Hani Lee;Seongmin Kim;Hakkyong Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • With advancements in artificial intelligence technology, intelligent CCTV systems are being deployed across various environments, such as river bridges and construction sites. However, a conflict arises regarding the opening and closing of rooftop access points due to concerns over potential accidents and crime incidents and their role as emergency evacuation spaces. While the relevant law typically mandates the constant opening of designated rooftop access points, closures are often tacitly permitted in practice for security reasons, with a lack of appropriate legal measures. In this context, this study proposes a detection system utilizing intelligent CCTV to respond to emergencies that may occur on rooftops. We develop a system based on the YOLOv5 object detection model to detect assault and suicide attempts by jumping, introducing a new metric to assess them. Experimental results demonstrate that the proposed system rapidly detects assault and suicide attempts with high accuracy. Additionally, through a legal analysis of rooftop access point management, deficiencies in the legal framework regarding rooftop access and CCTV installation are identified, and improvement measures are proposed. With technological and legal improvements, we believe that crime and accident incidents in rooftop environments will decrease.