• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.136 seconds

Development and Verification of an AI Model for Melon Import Prediction

  • KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.29-37
    • /
    • 2023
  • Due to climate change, interest in crop production and distribution is increasing, and attempts are being made to use bigdata and AI to predict production volume and control shipments and distribution stages. Prediction of agricultural product imports not only affects prices, but also controls shipments of farms and distributions of distribution companies, so it is important information for establishing marketing strategies. In this paper, we create an artificial intelligence prediction model that predicts the future import volume based on the wholesale market melon import volume data disclosed by the agricultural statistics information system and evaluate its accuracy. We create prediction models using three models: the Neural Prophet technique, the Ensembled Neural Prophet model, and the GRU model. As a result of evaluating the performance of the model by comparing two major indicators, MAE and RMSE, the Ensembled Neural Prophet model predicted the most accurately, and the GRU model also showed similar performance to the ensemble model. The model developed in this study is published on the web and used in the field for 1 year and 6 months, and is used to predict melon production in the near future and to establish marketing and distribution strategies.

Recommendation Model for Battlefield Analysis based on Siamese Network

  • Geewon, Suh;Yukyung, Shin;Soyeon, Jin;Woosin, Lee;Jongchul, Ahn;Changho, Suh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a training method of a recommendation learning model that analyzes the battlefield situation and recommends a suitable hypothesis for the current situation. The proposed learning model uses the preference determined by comparing the two hypotheses as a label data to learn which hypothesis best analyzes the current battlefield situation. Our model is based on Siamese neural network architecture which uses the same weights on two different input vectors. The model takes two hypotheses as an input, and learns the priority between two hypotheses while sharing the same weights in the twin network. In addition, a score is given to each hypothesis through the proposed post-processing ranking algorithm, and hypotheses with a high score can be recommended to the commander in charge.

Convolutional Neural Network Model Using Data Augmentation for Emotion AI-based Recommendation Systems

  • Ho-yeon Park;Kyoung-jae Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.57-66
    • /
    • 2023
  • In this study, we propose a novel research framework for the recommendation system that can estimate the user's emotional state and reflect it in the recommendation process by applying deep learning techniques and emotion AI (artificial intelligence). To this end, we build an emotion classification model that classifies each of the seven emotions of angry, disgust, fear, happy, sad, surprise, and neutral, respectively, and propose a model that can reflect this result in the recommendation process. However, in the general emotion classification data, the difference in distribution ratio between each label is large, so it may be difficult to expect generalized classification results. In this study, since the number of emotion data such as disgust in emotion image data is often insufficient, correction is made through augmentation. Lastly, we propose a method to reflect the emotion prediction model based on data through image augmentation in the recommendation systems.

The Prediction of Export Credit Guarantee Accident using Machine Learning (기계학습을 이용한 수출신용보증 사고예측)

  • Cho, Jaeyoung;Joo, Jihwan;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.83-102
    • /
    • 2021
  • The government recently announced various policies for developing big-data and artificial intelligence fields to provide a great opportunity to the public with respect to disclosure of high-quality data within public institutions. KSURE(Korea Trade Insurance Corporation) is a major public institution for financial policy in Korea, and thus the company is strongly committed to backing export companies with various systems. Nevertheless, there are still fewer cases of realized business model based on big-data analyses. In this situation, this paper aims to develop a new business model which can be applied to an ex-ante prediction for the likelihood of the insurance accident of credit guarantee. We utilize internal data from KSURE which supports export companies in Korea and apply machine learning models. Then, we conduct performance comparison among the predictive models including Logistic Regression, Random Forest, XGBoost, LightGBM, and DNN(Deep Neural Network). For decades, many researchers have tried to find better models which can help to predict bankruptcy since the ex-ante prediction is crucial for corporate managers, investors, creditors, and other stakeholders. The development of the prediction for financial distress or bankruptcy was originated from Smith(1930), Fitzpatrick(1932), or Merwin(1942). One of the most famous models is the Altman's Z-score model(Altman, 1968) which was based on the multiple discriminant analysis. This model is widely used in both research and practice by this time. The author suggests the score model that utilizes five key financial ratios to predict the probability of bankruptcy in the next two years. Ohlson(1980) introduces logit model to complement some limitations of previous models. Furthermore, Elmer and Borowski(1988) develop and examine a rule-based, automated system which conducts the financial analysis of savings and loans. Since the 1980s, researchers in Korea have started to examine analyses on the prediction of financial distress or bankruptcy. Kim(1987) analyzes financial ratios and develops the prediction model. Also, Han et al.(1995, 1996, 1997, 2003, 2005, 2006) construct the prediction model using various techniques including artificial neural network. Yang(1996) introduces multiple discriminant analysis and logit model. Besides, Kim and Kim(2001) utilize artificial neural network techniques for ex-ante prediction of insolvent enterprises. After that, many scholars have been trying to predict financial distress or bankruptcy more precisely based on diverse models such as Random Forest or SVM. One major distinction of our research from the previous research is that we focus on examining the predicted probability of default for each sample case, not only on investigating the classification accuracy of each model for the entire sample. Most predictive models in this paper show that the level of the accuracy of classification is about 70% based on the entire sample. To be specific, LightGBM model shows the highest accuracy of 71.1% and Logit model indicates the lowest accuracy of 69%. However, we confirm that there are open to multiple interpretations. In the context of the business, we have to put more emphasis on efforts to minimize type 2 error which causes more harmful operating losses for the guaranty company. Thus, we also compare the classification accuracy by splitting predicted probability of the default into ten equal intervals. When we examine the classification accuracy for each interval, Logit model has the highest accuracy of 100% for 0~10% of the predicted probability of the default, however, Logit model has a relatively lower accuracy of 61.5% for 90~100% of the predicted probability of the default. On the other hand, Random Forest, XGBoost, LightGBM, and DNN indicate more desirable results since they indicate a higher level of accuracy for both 0~10% and 90~100% of the predicted probability of the default but have a lower level of accuracy around 50% of the predicted probability of the default. When it comes to the distribution of samples for each predicted probability of the default, both LightGBM and XGBoost models have a relatively large number of samples for both 0~10% and 90~100% of the predicted probability of the default. Although Random Forest model has an advantage with regard to the perspective of classification accuracy with small number of cases, LightGBM or XGBoost could become a more desirable model since they classify large number of cases into the two extreme intervals of the predicted probability of the default, even allowing for their relatively low classification accuracy. Considering the importance of type 2 error and total prediction accuracy, XGBoost and DNN show superior performance. Next, Random Forest and LightGBM show good results, but logistic regression shows the worst performance. However, each predictive model has a comparative advantage in terms of various evaluation standards. For instance, Random Forest model shows almost 100% accuracy for samples which are expected to have a high level of the probability of default. Collectively, we can construct more comprehensive ensemble models which contain multiple classification machine learning models and conduct majority voting for maximizing its overall performance.

Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs

  • Jung Eun Huh; Jong Hyuk Lee;Eui Jin Hwang;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Objective: Little is known about the effects of using different expert-determined reference standards when evaluating the performance of deep learning-based automatic detection (DLAD) models and their added value to radiologists. We assessed the concordance of expert-determined standards with a clinical gold standard (herein, pathological confirmation) and the effects of different expert-determined reference standards on the estimates of radiologists' diagnostic performance to detect malignant pulmonary nodules on chest radiographs with and without the assistance of a DLAD model. Materials and Methods: This study included chest radiographs from 50 patients with pathologically proven lung cancer and 50 controls. Five expert-determined standards were constructed using the interpretations of 10 experts: individual judgment by the most experienced expert, majority vote, consensus judgments of two and three experts, and a latent class analysis (LCA) model. In separate reader tests, additional 10 radiologists independently interpreted the radiographs and then assisted with the DLAD model. Their diagnostic performance was estimated using the clinical gold standard and various expert-determined standards as the reference standard, and the results were compared using the t test with Bonferroni correction. Results: The LCA model (sensitivity, 72.6%; specificity, 100%) was most similar to the clinical gold standard. When expert-determined standards were used, the sensitivities of radiologists and DLAD model alone were overestimated, and their specificities were underestimated (all p-values < 0.05). DLAD assistance diminished the overestimation of sensitivity but exaggerated the underestimation of specificity (all p-values < 0.001). The DLAD model improved sensitivity and specificity to a greater extent when using the clinical gold standard than when using the expert-determined standards (all p-values < 0.001), except for sensitivity with the LCA model (p = 0.094). Conclusion: The LCA model was most similar to the clinical gold standard for malignant pulmonary nodule detection on chest radiographs. Expert-determined standards caused bias in measuring the diagnostic performance of the artificial intelligence model.

Incorporation of Fuzzy Theory with Heavyweight Ontology and Its Application on Vague Information Retrieval for Decision Making

  • Bukhari, Ahmad C.;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • The decision making process is based on accurate and timely available information. To obtain precise information from the internet is becoming more difficult due to the continuous increase in vagueness and uncertainty from online information resources. This also poses a problem for blind people who desire the full use from online resources available to other users for decision making in their daily life. Ontology is considered as one of the emerging technology of knowledge representation and information sharing today. Fuzzy logic is a very popular technique of artificial intelligence which deals with imprecision and uncertainty. The classical ontology can deal ideally with crisp data but cannot give sufficient support to handle the imprecise data or information. In this paper, we incorporate fuzzy logic with heavyweight ontology to solve the imprecise information extraction problem from heterogeneous misty sources. Fuzzy ontology consists of fuzzy rules, fuzzy classes and their properties with axioms. We use Fuzzy OWL plug-in of Protege to model the fuzzy ontology. A prototype is developed which is based on OWL-2 (Web Ontology Language-2), PAL (Protege Axiom Language), and fuzzy logic in order to examine the effectiveness of the proposed system.

Animal Sounds Classification Scheme Based on Multi-Feature Network with Mixed Datasets

  • Kim, Chung-Il;Cho, Yongjang;Jung, Seungwon;Rew, Jehyeok;Hwang, Eenjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3384-3398
    • /
    • 2020
  • In recent years, as the environment has become an important issue in dealing with food, energy, and urban development, diverse environment-related applications such as environmental monitoring and ecosystem management have emerged. In such applications, automatic classification of animals using video or sound is very useful in terms of cost and convenience. So far, many works have been done for animal sounds classification using artificial intelligence techniques such as a convolutional neural network. However, most of them have dealt only with the sound of a specific class of animals such as bird sounds or insect sounds. Due to this, they are not suitable for classifying various types of animal sounds. In this paper, we propose a sound classification scheme based on a multi-feature network for classifying sounds of multiple species of animals. To do that, we first collected multiple animal sound datasets and grouped them into classes. Then, we extracted their audio features by generating mixed records and used those features for training. To evaluate the effectiveness of our scheme, we constructed an animal sound classification model and performed various experiments. We report some of the results.

The optimal control technology on complex environment in horticulture based on artificial intelligence (인공지능 기반 시설원예 최적 복합 환경 제어 기술)

  • Min, Jae Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.756-759
    • /
    • 2017
  • The productivity of cultivated crops in Korea is low compared to the Netherlands, which is an advanced agricultural country. In addition, modernization of facility and complex environmental control technology are needed to overcome poor growth and productivity deterioration caused by shortage of sunshine, abnormal temperature and high temperature due to abnormal climate. On the other hand, domestic facility horticulture complex environmental control is a level of machine automation that can check the internal situation of a green house with a cell phone and remotely operate a sprinkler, heat cover, curtain, ventilator, Therefore, this paper suggests the development of optimum environment control technology for facility horticulture based on the growth model and the cultivation technology knowledge base in order to realize the automation of optimal complex environment control and contribute to improvement of quality and productivity of cultivated crops.

  • PDF

Robot Vision to Audio Description Based on Deep Learning for Effective Human-Robot Interaction (효과적인 인간-로봇 상호작용을 위한 딥러닝 기반 로봇 비전 자연어 설명문 생성 및 발화 기술)

  • Park, Dongkeon;Kang, Kyeong-Min;Bae, Jin-Woo;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.22-30
    • /
    • 2019
  • For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.

NAAL: Software for controlling heterogeneous IoT devices based on neuromorphic architecture abstraction (NAAL: 뉴로모픽 아키텍처 추상화 기반 이기종 IoT 기기 제어용 소프트웨어)

  • Cho, Jinsung;Kim, Bongjae
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2022
  • Neuromorphic computing generally shows significantly better power, area, and speed performance than neural network computation using CPU and GPU. These characteristics are suitable for resource-constrained IoT environments where energy consumption is important. However, there is a problem in that it is necessary to modify the source code for environment setting and application operation according to heterogeneous IoT devices that support neuromorphic computing. To solve these problems, NAAL was proposed and implemented in this paper. NAAL provides functions necessary for IoT device control and neuromorphic architecture abstraction and inference model operation in various heterogeneous IoT device environments based on common APIs of NAAL. NAAL has the advantage of enabling additional support for new heterogeneous IoT devices and neuromorphic architectures and computing devices in the future.