• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.028 seconds

An Incentive Mechanism Design for Trusted Data Management on Internet of Vehicle with Decentralized Approach (분산형 접근 방식을 적용한 차량 인터넷에서 신뢰할수 있는 데이터 관리를 위한 인센티브 메커니즘 설계)

  • Firdaus, Muhammad;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.889-899
    • /
    • 2021
  • This paper proposes a reliable data sharing scheme on the internet of vehicles (IoV) by utilizing blockchain technology for constructing a decentralized system approach. In our model, to maintain the credibility of the information messages sent by the vehicles to the system, we propose a reputation rating mechanism, in which neighboring vehicles validate every received information message. Furthermore, we incorporate an incentive mechanism based on smart contracts, so that vehicles will get certain rewards from the system when they share correct traffic information messages. We simulated the IoV network using a discrete event simulator to analyze network performance, whereas the incentive model is designed by leveraging the smart contract available in the Ethereum platform.

The Future of Flexible Learning and Emerging Technology in Medical Education: Reflections from the COVID-19 Pandemic (포스트 코로나 시대 플렉서블 러닝과 첨단기술 활용 중심의 의학교육 전망과 발전)

  • Park, Jennifer Jihae
    • Korean Medical Education Review
    • /
    • v.23 no.3
    • /
    • pp.147-153
    • /
    • 2021
  • The coronavirus disease 2019 (COVID-19) pandemic made it necessary for medical schools to restructure their curriculum by switching from face-to-face instruction to various forms of flexible learning. Flexible learning is a student-centered approach to learning that has received interest in many educational sectors. It is a critical strategy for expanding access to higher education during the pandemic. As flexible learning includes online, blended, hybrid, and hyflex learning options, learners have the opportunity to select an instruction modality based on their needs and interests. The shift to flexible learning in medical education took place rapidly in response to the COVID-19 pandemic, and learners, instructors, and schools were not prepared for this instructional change. Through the lens of the technology acceptance model, human agency, and a social constructivist perspective, I examine students, instructors, and educational institutions' roles in successfully navigating the digital transformation era. The pandemic has also accelerated the use of advanced information and communication technologies, such as artificial intelligence and virtual reality, in learning. Through a review of the literature, this paper aimed to reflect on current flexible learning practices from the instructional design and educational technology perspective and explore emerging technologies that may be implemented in future medical education.

An Automatic Breast Mass Segmentation based on Deep Learning on Mammogram (유방 영상에서 딥러닝 기반의 유방 종괴 자동 분할 연구)

  • Kwon, So Yoon;Kim, Young Jae;Kim, Gwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1363-1369
    • /
    • 2018
  • Breast cancer is one of the most common cancers in women worldwide. In Korea, breast cancer is most common cancer in women followed by thyroid cancer. The purpose of this study is to evaluate the possibility of using deep - run model for segmentation of breast masses and to identify the best deep-run model for breast mass segmentation. In this study, data of patients with breast masses were collected at Asan Medical Center. We used 596 images of mammography and 596 images of gold standard. In the area of interest of the medical image, it was cut into a rectangular shape with a margin of about 10% up and down, and then converted into an 8-bit image by adjusting the window width and level. Also, the size of the image was resampled to $150{\times}150$. In Deconvolution net, the average accuracy is 91.78%. In U-net, the average accuracy is 90.09%. Deconvolution net showed slightly better performance than U-net in this study, so it is expected that deconvolution net will be better for breast mass segmentation. However, because of few cases, there are a few images that are not accurately segmented. Therefore, more research is needed with various training data.

A study on the deployment status and development plan of retail technology

  • KIM, Se-Jin;LEE, Sang-Youn
    • Fourth Industrial Review
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Purpose - Faced with the great change of the 4th industrial revolution and the addition of the COVID-19 pandemic, great confusion and crises are occurring in the retail environment as well. The purpose of this study is to suggest the necessity of establishing a methodology for applying retail tech to offline distribution channels in crisis. Research design, data, and methodology - After examining the recent developments of representative fields to which retail technology is applied, it is rearranged through consideration through previous studies. Result - The retail industry must transform into digital commerce through digital transformation. According to the development of retail technology, the distribution industry is at a time of change from the stage of brokering product and service transactions to a structure that creates value based on information on production and consumption. The business model of the distribution industry must be converted to a platform business model in which both consumers and producers become users. Conclusion - In-depth analysis of the cases has not been conducted, and there are limitations in that the development is somewhat insufficient due to insufficient prior research data. However, it is meaningful to suggest the necessity of finding a methodology for applying retail technology to overcome the crisis of offline retailers through quantitative research on the retail technology area.

Evolution of Business Model: From Plug To Platform - Dawon DNS Business Case- (비즈니스 모델의 진화: 플러그에서 플랫폼으로 -다원 DNS IoT 기술의 사례-)

  • Park, MinHyuk;Yeo, Unnam;Lee, Jungwoo
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.105-118
    • /
    • 2021
  • As we enter the era of the 4th industrial revolution, information and communication technologies, including artificial intelligence and big data, are converging throughout society. Especially, as the importance of the social foundation of hyper-connection grows, the social influence of IoT, a network of connecting objects, people, and various entities, is also gradually expanding. In addition, as a pandemic, COVID-19, continues, interests in untact-oriented technology and service development are growing more than ever, and each company is trying to establish a core competency strategy to gain an edge in competition in the changing society. This study is a case study centered on Dawon DNS, a company that provides an IoT-based AI smart plug platform. Dawon DNS is broadening its services while developing products by applying advanced technologies, and this study is aiming to investigate the core competencies of the business evolution process. The obtained result of this study will provide implications for companies to become more competitive by suggesting the attitudes and strategies that startups should have during the transforming business environment.

Implementation of Photovoltaic Panel failure detection system using semantic segmentation (시멘틱세그멘테이션을 활용한 태양광 패널 고장 감지 시스템 구현)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1777-1783
    • /
    • 2021
  • The use of drones is gradually increasing for the efficient maintenance of large-scale renewable energy power generation complexes. For a long time, photovoltaic panels have been photographed with drones to manage panel loss and contamination. Various approaches using artificial intelligence are being tried for efficient maintenance of large-scale photovoltaic complexes. Recently, semantic segmentation-based application techniques have been developed to solve the image classification problem. In this paper, we propose a classification model using semantic segmentation to determine the presence or absence of failures such as arcs, disconnections, and cracks in solar panel images obtained using a drone equipped with a thermal imaging camera. In addition, an efficient classification model was implemented by tuning several factors such as data size and type and loss function customization in U-Net, which shows robust classification performance even with a small dataset.

Data Framework Design of EDISON 2.0 Digital Platform for Convergence Research

  • Sunggeun Han;Jaegwang Lee;Inho Jeon;Jeongcheol Lee;Hoon Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2292-2313
    • /
    • 2023
  • With improving computing performance, various digital platforms are being developed to enable easily utilization of high-performance computing environments. EDISON 1.0 is an online simulation platform widely used in computational science and engineering education. As the research paradigm changes, the demand for developing the EDISON 1.0 platform centered on simulation into the EDISON 2.0 platform centered on data and artificial intelligence is growing. Herein, a data framework, a core module for data-centric research on EDISON 2.0 digital platform, is proposed. The proposed data framework provides the following three functions. First, it provides a data repository suitable for the data lifecycle to increase research reproducibility. Second, it provides a new data model that can integrate, manage, search, and utilize heterogeneous data to support a data-driven interdisciplinary convergence research environment. Finally, it provides an exploratory data analysis (EDA) service and data enrichment using an AI model, both developed to strengthen data reliability and maximize the efficiency and effectiveness of research endeavors. Using the EDISON 2.0 data framework, researchers can conduct interdisciplinary convergence research using heterogeneous data and easily perform data pre-processing through the web-based UI. Further, it presents the opportunity to leverage the derived data obtained through AI technology to gain insights and create new research topics.

Generative Interactive Psychotherapy Expert (GIPE) Bot

  • Ayesheh Ahrari Khalaf;Aisha Hassan Abdalla Hashim;Akeem Olowolayemo;Rashidah Funke Olanrewaju
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2023
  • One of the objectives and aspirations of scientists and engineers ever since the development of computers has been to interact naturally with machines. Hence features of artificial intelligence (AI) like natural language processing and natural language generation were developed. The field of AI that is thought to be expanding the fastest is interactive conversational systems. Numerous businesses have created various Virtual Personal Assistants (VPAs) using these technologies, including Apple's Siri, Amazon's Alexa, and Google Assistant, among others. Even though many chatbots have been introduced through the years to diagnose or treat psychological disorders, we are yet to have a user-friendly chatbot available. A smart generative cognitive behavioral therapy with spoken dialogue systems support was then developed using a model Persona Perception (P2) bot with Generative Pre-trained Transformer-2 (GPT-2). The model was then implemented using modern technologies in VPAs like voice recognition, Natural Language Understanding (NLU), and text-to-speech. This system is a magnificent device to help with voice-based systems because it can have therapeutic discussions with the users utilizing text and vocal interactive user experience.

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Development of Customized Textile Design using AI Technology -A Case of Korean Traditional Pattern Design-

  • Dawool Jung;Sung-Eun Suh
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.6
    • /
    • pp.1137-1156
    • /
    • 2023
  • With the advent of artificial intelligence (AI) during the Fourth Industrial Revolution, the fashion industry has simplified the production process and overcome the technical difficulties of design. This study anticipates likely changes in the digital age and develops a model that will allow consumers to design textile patterns using AI technology. Previous studies and industrial examples of AI technology's use in the textile design industry were investigated, and a textile pattern was developed using an AI algorithm. A new textile design model was then proposed based on its application to both virtual and physical clothing. Inspired by traditional Korean masks and props, AI technology was used to input color data from open application programming interface images. By inserting these into various repeating structures, a textile design was developed and simulated as garments for both virtual and real garments. We expect that this study will establish a new textile design development method for Generation Z, who favor customized designs. This study can inform the use of personalization in generative textile design as well as the systemization of technology-driven methods for customized and participatory textile design.