Journal of the Korea Society of Computer and Information
/
v.27
no.12
/
pp.51-58
/
2022
In this paper, we propose a decision tree-based machine learning model that leads to food exchange table renewal by classifying food groups through machine learning for existing food and food data found by web crawling. The food exchange table is the standard for food exchange intake when composing a diet such as diet and diet, as well as patients who need nutritional management. The food exchange table, which is the standard for the composition of the diet, takes a lot of manpower and time in the process of revision through the National Health and Nutrition Survey, making it difficult to quickly reflect food changes according to new foods or trends. Since the proposed technique classifies newly added foods based on the existing food group, it is possible to organize a rapid food exchange table reflecting the trend of food. As a result of classifying food into the proposed model in the study, the accuracy of the food group in the food exchange table was 97.45%, so this food classification model is expected to be highly utilized for the composition of a diet that suits your taste in hospitals and nursing homes.
Yerin Yu;Jeongeun Byun;Kuk Jin Bae;Sumin Seo;Younha Kim;Namgyu Kim
Journal of Information Technology Applications and Management
/
v.30
no.2
/
pp.1-18
/
2023
Recently, as technology development has accelerated and product life cycles have been shortened, it is necessary to derive key product features from customers in the R&D planning and evaluation stage. More companies want differentiated competitiveness by providing consumer-tailored products based on big data and artificial intelligence technology. To achieve this, the need to correctly grasp the required quality, which is a requirement of consumers, is increasing. However, the existing methods are centered on suppliers or domain experts, so there is a gap from the actual perspective of consumers. In other words, product attributes were defined by suppliers or field experts, but this may not consider consumers' actual perspective. Accordingly, the demand for deriving the product's main attributes through reviews containing consumers' perspectives has recently increased. Therefore, we propose a review data analysis-based required quality methodology containing customer requirements. Specifically, a pre-training language model with a good understanding of Korean reviews was established, consumer intent was correctly identified, and key contents were extracted from the review through a combination of KeyBERT and topic modeling to derive the required quality for each product. RevBERT, a Korean review domain-specific pre-training language model, was established through further pre-training. By comparing the existing pre-training language model KcBERT, we confirmed that RevBERT had a deeper understanding of customer reviews. In addition, all processes other than that of selecting the required quality were linked to the automation process, resulting in the automation of deriving the required quality based on data.
Daehee Kim;Jonghyun Lee;Beom-seok Kim;Jinhong Yang
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.5
/
pp.279-291
/
2023
In recent years, language model-based generative AI technologies have made remarkable progress. In particular, it has attracted a lot of attention due to its increasing potential in various fields such as summarization and code writing. As a reflection of this interest, the number of patent applications related to generative AI has been increasing rapidly. In order to understand these trends and develop strategies accordingly, future forecasting is key. Predictions can be used to better understand the future trends in the field of technology and develop more effective strategies. In this paper, we analyzed patents filed to date to identify the direction of development of language model-based generative AI. In particular, we took an in-depth look at research and invention activities in each country, focusing on application trends by year and detailed technology. Through this analysis, we tried to understand the detailed technologies contained in the core patents and predict the future development trends of generative AI.
The purpose of this study is to develop a machine learning-based AI convergence class model and class design principles that can foster data literacy in high school students, and to develop detailed guidelines accordingly. We developed a machine learning-based teaching model, design principles, and detailed guidelines through research on prior literature, and applied them to 15 students at a specialized high school in Seoul. As a result of the study, students' data literacy improved statistically significantly (p<.001), so we confirmed that the model of this study has a positive effect on improving learners' data literacy, and it is expected that it will lead to related research in the future.
One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.
Prediction of corporate failure using past financial data is a well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as model construction process. Irrespective of the efficiency of a teaming procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network model. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables fur neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.
CNN (Convolution Neural Network) is one of the most important techniques to identify the kind of objects in the captured pictures. Whereas the conventional models have been used for low resolution images, the technique to recognize the high resolution images becomes crucial in the field of artificial intelligence. In this paper, we proposed an efficient CNN model based on dilated convolution and thresholding techniques to increase the recognition ratio and to decrease the computational complexity. The simulation results show that the proposed algorithm outperforms the conventional method and the thresholding technique enhances the performance of the proposed model.
Based on the constructivist learning environments model and the learner-centered psychological principles, STEAM education program with the theme of eliminating smog was developed. Through the program, senior elementary school students will learn and apply the convergence knowledge of science, technology, engineering, arts and mathematics such as the human body's respiratory system (S), immune system (S), big data (M, T), computer programming(M), and aduino sensor utilization (E) directly to solve the problem. After expert validity testing, we found that developed program meet the standards of STEAM education program development and can develop creative thinking skills to find and solve problems in students' daily lives. In addition, this study is meaningful in providing a reference example for the development of STEAM education programs that enhance convergence knowledge in the future.
소프트웨어 개발노력 추정에 대한 연구는 소프트웨어가 복잡해지고 범위가 크게 증가함에 따라서 그 중은 지속적으로 부각되고 있다. 관련 프로젝트를 발주하는 업체나, 이를 수주하고 개발을 진행하는 업체에게 원가를 고려하는 측면에서 매우 중요한 부분을 차지하고 있다. 이러한 개발노력 추정을 위하여 다양한 접근 방식들이 고려되어지고 있는데, 그중에서 많이 활용되어지고 있는 방식은 소프트웨어 규모에 기반을 둔 LOC(Line Of Code) 기반 COCOMO (Constructive Cost Model) 모델이나 기능점수(Function Point)를 기반으로 한 회귀분석 모델, 인공지능(Artificial Intelligence)을 활용한 신경망(Neural Network) 모델, 사례분석기법 (CBR, Case Based Reasoning) 등이 있다. 이중에서 최근에 기능점수를 활용한 개발노력 추정에 관한 연구들이 활발히 진행되고 있으나 개발노력 추정에는 소프트웨어 규모의 척도인 기능점수 뿐만 아니라, 개발환경을 구성하는 여러 가지 측면에 대한 고려가 추가되어져야 한다. 이에 본 논문은 최신의 소프트웨어 개발 사례들에 대하여 기능점수 및 추가적인 개발환경 요소들을 면밀히 분석하고, 분석한 내용에 대해서 전문가들의 설문을 통한 빈도분석 및 로지스틱 회귀분석, 데이터마이닝 기법인 신경망 분석 등을 활용하여 개발노력 추정 모델을 구축함으로써, 소프트웨어 개발의 다양한 측면의 중요성을 강조하고, 정확한 추정의 방안을 제시 하고자 노력 하였다.
Journal of Korean Association for Spatial Structures
/
v.5
no.3
s.17
/
pp.117-122
/
2005
This paper investigated the optimum design of truss structures based on Genetic Algorithms (GA's). With GA's characteristic of running side by side, the overall optimization and feasible operation, the optimum design model of truss structures was established. Elite models were used to assure that the best units of the previous generation had access to the evolution of current generation. Using of non-uniformity mutation brought the obvious mutation at earlier stage and stable mutation in the later stage; this benefited the convergence of units to the best result. In addition, to avoid GA's drawback of converging to local optimization easily, by the limit value of each variable was changed respectively and the genetic operation was performed two times, so the program could work more efficiently and obtained more precise results. Finally, by simulating evolution process of nature biology of a kind self-organize, self-organize, artificial intelligence, this paper established continuous structural optimization model for ten bars cantilever truss, and obtained satisfactory result of optimum design. This paper further explained that structural optimization is practicable with GA's, and provided the theoretic basis for the GA's optimum design of structural engineering.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.