• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,231, Processing Time 0.031 seconds

A Study on Indoor Smoke Detection Based on Convolutional Neural Network Using Real Time Image Analysis (실시간 영상분석을 이용한 합성곱 신경망 기반의 실내 연기 감지 연구)

  • Ryu, Jin-Kyu;Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Dae-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.537-539
    • /
    • 2019
  • Recently, large-scale fires have been generated as urban buildings have become more and more density. Especially, the expansion of smoke in buildings due to high-rise is an problem, and the smoke is the main cause of death in fires. Therefore, in this paper, the image-based smoke detection is proposed through deep learning-based artificial intelligence techniques to prevent possible damage if existing detectors are not detected. In addition, the detection model was not configured simply through only the smoke data set, but the data set in the haze form was additionally composed together to compensate for the accuracy.

  • PDF

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

Study on Implementation of Restaurant Recommendation System based on Deep Learning-based Consumer Data (딥러닝 기반의 소비자 데이터를 응용한 외식업체 추천 시스템 구현에 관한 연구)

  • Kim, Hee-young;Jung, Sun-mi;Kim, Woo-suk;Ryu, Gi-hwan;Son, Hyeon-kon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.437-442
    • /
    • 2021
  • In this study, a recommendation algorithm was implemented by learning a deep learning-based classification model for consumer data. For this purpose, a meaningful result is presented as a result of learning using ResNet50, which is commonly used in classification tasks by converting user data into images.

The Application of User-based Sports Matching System using Customer Satisfaction and Loyalty Analysis for Sports Event Contents

  • Yu, Kyung-Mi;Moon, Seok-Jae
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.325-331
    • /
    • 2022
  • As the perception of sports activities changes positively, the desire and popularity for sports activities are rapidly increasing. Therefore, the popularity of sporting events is also increasing. Previous studies on sporting events have focused only on research in the field of social sciences. Therefore, in this study, in order to increase customer satisfaction and customer loyalty of sports event visitors, they were classified into challenge factors, competition factors, achievement factors, and relationship factors, and their effects on satisfaction and loyalty were studied and analyzed. And based on the research design model and empirical analysis, a user-based sports event matching system was proposed.

Price estimation based on business model pricing strategy and fuzzy logic

  • Callistus Chisom Obijiaku;Kyungbaek Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2023
  • Pricing, as one of the most important aspects of a business, should be taken seriously. Whatever affects a company's pricing system tends to affect its profits and losses as well. Currently, many manufacturing companies fix product prices manually by members of an organization's management team. However, due to the imperfect nature of humans, an extremely low or high price may be fixed, which is detrimental to the company in either case. This paper proposes the development of a fuzzy-based price expert system (Expert Fuzzy Price (EFP)) for manufacturing companies. This system will be able to recommend appropriate prices for products in manufacturing companies based on four major pricing strategic goals, namely: Product Demand, Price Skimming, Competition Price, and Target population.

Federated Learning and LLM-based Social Media Comment Classification System Using Crowdsourcing Techniques

  • Jungho Kang
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.25-31
    • /
    • 2024
  • Currently, on social media, malicious comments have emerged as a serious issue. Existing artificial intelligence-based comment classification systems have limitations due to data bias and overfitting. To address this, this study proposed a novel comment classification system that combines crowdsourcing and federated learning. This system collects data from various users and utilizes a large language model like KoBERT through federated learning to classify comments accurately while protecting user privacy. It is expected to provide higher accuracy than existing methods and improve significantly the efficiency of detecting malicious comments. The proposed system can be applied to social media platforms and online communities.

A Study on Spatial Aesthetic Characteristics in Modern Fashion Converged with Virtual Reality Technology -Focusing on Fashion Shows, Fashion Exhibitions, and Fashion Design Apps- (가상현실 기술과 융합된 현대패션에 나타난 공간적 미학 특성 연구 -패션쇼, 패션전시, 패션디자인 앱을 중심으로-)

  • Liu, Shuai;Kwon, Mi Jeong
    • Journal of Fashion Business
    • /
    • v.23 no.5
    • /
    • pp.96-110
    • /
    • 2019
  • With the continuous development of artificial intelligence using computers in the Fourth Industrial Age, the virtual space created by virtual reality experiences boosted by the power of artificial intelligence, provides a new experience for us. The purpose of this study is to explore the new aesthetics that the fashion industry provides to users in virtual space created by virtual reality technology. This research method is based on theoretical research on virtual reality technology and virtual space and constructs a research model applied to this research. The scope of this study is the application of virtual reality technology to fashion shows, fashion exhibitions, and fashion design apps on the website of professional virtual reality technology and fashion for the last five years from 2014 to 2019, which actively merged virtual reality technology with modern fashion. We will analyze the cases one by one. The results of this study are as follows. First, this study shows that the constructed virtual space of modern fashion using virtual reality technology creates three kinds of physical space, perceptual space, and imaginary space based on the commutative theory of virtual space formed by Swedish scholar J. $Widestr{\ddot{o}}m$. Second, virtual reality technology applied to fashion shows, fashion exhibitions, and fashion design apps is characterized by four aesthetic characteristics of presence, perceptual expansion, interactivity, and immersion in physical space, perception space, and imagination space.

An Intelligent Chatbot Utilizing BERT Model and Knowledge Graph (BERT 모델과 지식 그래프를 활용한 지능형 챗봇)

  • Yoo, SoYeop;Jeong, OkRan
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.87-98
    • /
    • 2019
  • As artificial intelligence is actively studied, it is being applied to various fields such as image, video and natural language processing. The natural language processing, in particular, is being studied to enable computers to understand the languages spoken and spoken by people and is considered one of the most important areas in artificial intelligence technology. In natural language processing, it is a complex, but important to make computers learn to understand a person's common sense and generate results based on the person's common sense. Knowledge graphs, which are linked using the relationship of words, have the advantage of being able to learn common sense easily from computers. However, the existing knowledge graphs are organized only by focusing on specific languages and fields and have limitations that cannot respond to neologisms. In this paper, we propose an intelligent chatbotsystem that collects and analyzed data in real time to build an automatically scalable knowledge graph and utilizes it as the base data. In particular, the fine-tuned BERT-based for relation extraction is to be applied to auto-growing graph to improve performance. And, we have developed a chatbot that can learn human common sense using auto-growing knowledge graph, it verifies the availability and performance of the knowledge graph.

Development of Machine Learning Education Program for Elementary Students Using Localized Public Data (지역화 공공데이터 기반 초등학생 머신러닝 교육 프로그램 개발)

  • Kim, Bongchul;Kim, Bomsol;Ko, Eunjeong;Moon, Woojong;Oh, Jeongcheol;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.751-759
    • /
    • 2021
  • This study developed an artificial intelligence education program using localized public data as an educational method for improving computing thinking skills of elementary school students. According to the ADDIE model, the program design was carried out based on the results of pre-requisite analysis for elementary school students, and textbooks and education programs were developed. Based on localized public data, the training program was constructed to learn the principles of artificial intelligence using machine learning for kids and scratches and to solve problems and improve computational thinking through abstracting public data for purpose. It is necessary to put this training program into the field through further research and verify the change in students' computational thinking as a result.

Development and application of software education programs to improve Underachievement

  • Kim, Jeong-Rang;Lee, Soo-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.283-291
    • /
    • 2021
  • In this paper, we propose the development and application of a software education program for underachievers. The software education program for underachieving students was developed in consideration of the characteristics of learner's suffering from underachievement and the educational effects of software education, and is meaningful in that it proposes a plan to improve the learning gap in distance learning. Learners can acquire digital literacy and learning skills by solving structured tasks in the form of courseware, intelligent tutoring, debugging, and artificial intelligence learning models in educational programs. Based on the effects of software education, such as enhancing logical thinking ability and problem solving ability, this program provides opportunities to solve fusion tasks to underachievers. Based on this, it is expected that it can have a positive effect on the overall academic work.