• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.029 seconds

Applications and Concerns of Generative AI: ChatGPT in the Field of Occupational Health (산업보건분야에서의 생성형 AI: ChatGPT 활용과 우려)

  • Ju Hong Park;Seunghon Ham
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.412-418
    • /
    • 2023
  • As advances in artificial intelligence (AI) increasingly approach areas once relegated to the realm of science fiction, there is growing public interest in using these technologies for practical everyday tasks in both the home and the workplace. This paper explores the applications of and implications for of using ChatGPT, a conversational AI model based on GPT-3.5 and GPT-4.0, in the field of occupational health and safety. After gaining over one million users within five days of its launch, ChatGPT has shown promise in addressing issues ranging from emergency response to chemical exposure to recommending personal protective equipment. However, despite its potential usefulness, the integration of AI into scientific work and professional settings raises several concerns. These concerns include the ethical dimensions of recognizing AI as a co-author in academic publications, the limitations and biases inherent in the data used to train these models, legal responsibilities in professional contexts, and potential shifts in employment following technological advances. This paper aims to provide a comprehensive overview of these issues and to contribute to the ongoing dialogue on the responsible use of AI in occupational health and safety.

A Study on AI-based MAC Scheduler in Beyond 5G Communication (5G 통신 MAC 스케줄러에 관한 연구)

  • Muhammad Muneeb;Kwang-Man Ko
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.891-894
    • /
    • 2024
  • The quest for reliability in Artificial Intelligence (AI) is progressively urgent, especially in the field of next generation wireless networks. Future Beyond 5G (B5G)/6G networks will connect a huge number of devices and will offer innovative services invested with AI and Machine Learning tools. Wireless communications, in general, and medium access control (MAC) techniques were among the fields that were heavily affected by this improvement. This study presents the applications and services of future communication networks. This study details the Medium Access Control (MAC) scheduler of Beyond-5G/6G from 3rd Generation Partnership (3GPP) and highlights the current open research issues which are yet to be optimized. This study provides an overview of how AI plays an important role in improving next generation communication by solving MAC-layer issues such as resource scheduling and queueing. We will select C-V2X as our use case to implement our proposed MAC scheduling model.

Evaluating AI Models and Predictors for COVID-19 Infection Dependent on Data from Patients with Cancer or Not: A Systematic Review

  • Takdon Kim;Heeyoung Lee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.34 no.3
    • /
    • pp.141-154
    • /
    • 2024
  • Background: As preexisting comorbidities are risk factors for Coronavirus Disease 19 (COVID-19), improved tools are needed for screening or diagnosing COVID-19 in clinical practice. Difficulties of including vulnerable patient data may create data imbalance and hinder the provision of well-performing prediction tools, such as artificial intelligence (AI) models. Thus, we systematically reviewed studies on AI prognosis prediction in patients infected with COVID-19 and existing comorbidities, including cancer, to investigate model performance and predictors dependent on patient data. PubMed and Cochrane Library databases were searched. This study included research meeting the criteria of using AI to predict outcomes in COVID-19 patients, whether they had cancer or not. Preprints, abstracts, reviews, and animal studies were excluded from the analysis. Majority of non-cancer studies (54.55 percent) showed an area under the curve (AUC) of >0.90 for AI models, whereas 30.77 percent of cancer studies showed the same result. For predicting mortality (3.85 percent), severity (8.33 percent), and hospitalization (14.29 percent), only cancer studies showed AUC values between 0.50 and 0.69. The distribution of comorbidity data varied more in non-cancer studies than in cancer studies but age was indicated as the primary predictor in all studies. Non-cancer studies with more balanced datasets of comorbidities showed higher AUC values than cancer studies. Based on the current findings, dataset balancing is essential for improving AI performance in predicting COVID-19 in patients with comorbidities, especially considering age.

A Specification-Based Methodology for Data Collection in Artificial Intelligence System (명세 기반 인공지능 학습 데이터 수집 방법)

  • Kim, Donggi;Choi, Byunggi;Lee, Jaeho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.479-488
    • /
    • 2022
  • In recent years, with the rapid development of machine learning technology, research utilizing machine learning has been actively conducted in fields such as cognition, reasoning and judgment, and action among various technologies constituting intelligent systems. In order to utilize this machine learning, it is indispensable to collect data for learning. However, the types of data generated vary according to the environment in which the data is generated, and the types and forms of data required are different depending on the learning model to be used for machine learning. Due to this, there is a problem that the existing data collection method cannot be reused in a new environment, and a specialized data collection module must be developed each time. In this paper, we propose a specification-based methology for data collection in artificial intelligence system to solve the above problems, ensure the reusability of the data collection method according to the data collection environment, and automate the implementation of the data collection function.

Limit equilibrium and swarm intelligence solutions in analyzing shallow footing's bearing capacity located on two-layered cohesionless soils

  • Hossein Moayedi;Mesut Gor;Mansour Mosallanezhad;Soheil Ghareh;Binh Nguyen Le
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.439-453
    • /
    • 2024
  • The research findings of two nonlinear machine learning and soft computing models- the Cuckoo optimization algorithm (COA) and the Teaching-learning-based optimization (TLBO) in combination with artificial neural network (ANN)-are presented in this article. Detailed finite element modeling (FEM) of a shallow footing on two layers of cohesionless soil provided the data sets. The models are trained and tested using the FEM outputs. Additionally, various statistical indices are used to compare and evaluate the predicted and calculated models, and the most precise model is then introduced. The most precise model is recommended to estimate the solution after the model assessment process. When the anticipated findings are compared to the FEM data, there is an excellent agreement, which indicates that the TLBO-MLP solutions in this research are reliable (R2=0.9816 for training and 0.99366 for testing). Additionally, the optimized COA-MLP network with a swarm size of 500 was observed to have R2 and RMSE values of (0.9613 and 0.11459) and (0.98017 and 0.09717) for both the normalized training and testing datasets, respectively. Moreover, a straightforward formula for the soft computing model is provided, and an excellent consensus is attained, indicating a high level of dependability for the suggested model.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms

  • Seo, Chan-Yang;Suh, Young-Joo;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2020
  • In this paper, we propose a machine learning method for diagnosing the failure of a gas pressure regulator. Originally, when implementing a machine learning model for detecting abnormal operation of a facility, it is common to install sensors to collect data. However, failure of a gas pressure regulator can lead to fatal safety problems, so that installing an additional sensor on a gas pressure regulator is not simple. In this paper, we propose various machine learning approach for diagnosing the abnormal operation of a gas pressure regulator with only the flow rate and gas pressure data collected from a gas pressure regulator itself. Since the fault data of a gas pressure regulator is not enough, the model is trained in all classes by applying the over-sampling method. The classification model was implemented using Gradient boosting, 1D Convolutional Neural Networks, and LSTM algorithm, and gradient boosting model showed the best performance among classification models with 99.975% accuracy.

Steel Surface Defect Detection using the RetinaNet Detection Model

  • Sharma, Mansi;Lim, Jong-Tae;Chae, Yi-Geun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.136-146
    • /
    • 2022
  • Some surface defects make the weak quality of steel materials. To limit these defects, we advocate a one-stage detector model RetinaNet among diverse detection algorithms in deep learning. There are several backbones in the RetinaNet model. We acknowledged two backbones, which are ResNet50 and VGG19. To validate our model, we compared and analyzed several traditional models, one-stage models like YOLO and SSD models and two-stage models like Faster-RCNN, EDDN, and Xception models, with simulations based on steel individual classes. We also performed the correlation of the time factor between one-stage and two-stage models. Comparative analysis shows that the proposed model achieves excellent results on the dataset of the Northeastern University surface defect detection dataset. We would like to work on different backbones to check the efficiency of the model for real world, increasing the datasets through augmentation and focus on improving our limitation.

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.