• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.022 seconds

Classification and prediction of the effects of nutritional intake on diabetes mellitus using artificial neural network sensitivity analysis: 7th Korea National Health and Nutrition Examination Survey

  • Kyungjin Chang;Songmin Yoo;Simyeol Lee
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1255-1266
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: This study aimed to predict the association between nutritional intake and diabetes mellitus (DM) by developing an artificial neural network (ANN) model for older adults. SUBJECTS/METHODS: Participants aged over 65 years from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey were included. The diagnostic criteria of DM were set as output variables, while various nutritional intakes were set as input variables. An ANN model comprising one input layer with 16 nodes, one hidden layer with 12 nodes, and one output layer with one node was implemented in the MATLAB® programming language. A sensitivity analysis was conducted to determine the relative importance of the input variables in predicting the output. RESULTS: Our DM-predicting neural network model exhibited relatively high accuracy (81.3%) with 11 nutrient inputs, namely, thiamin, carbohydrates, potassium, energy, cholesterol, sugar, vitamin A, riboflavin, protein, vitamin C, and fat. CONCLUSIONS: In this study, the neural network sensitivity analysis method based on nutrient intake demonstrated a relatively accurate classification and prediction of DM in the older population.

Prospect Theory based NPC Decision Making Model on Dynamic Terrain Analysis (동적 지형분석에서의 전망이론 기반 NPC 의사결정 모델)

  • Lee, Dong Hoon
    • Journal of Korea Game Society
    • /
    • v.14 no.4
    • /
    • pp.37-44
    • /
    • 2014
  • In this paper, we propose a NPC decision making model based on Prospect Theory which tries to model real-life choice, rather than optimal decision. For this purpose, we analyse the problems of reference point setting, diminishing sensitivity and loss aversion which are known as limitations of the utility theory and then apply these characteristics into the decision making in game. Dynamic Terrain Analysis is utilized to evaluate the proposed model and experimental result shows the method have effects on inducing diverse personality and emergent behavior on NPC.

An Intelligent CAD System for Development of Controllers of Active Magnetic Bearings

  • Jang, Seung-Ho;Kim, Chang-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1108-1118
    • /
    • 2001
  • The purpose of this study is to establish a CAD (Computer Aided Design) system for research and development(R&D) of a new product. In the R&D process of a new product, the design objects are frequently redesigned based on the experimental results obtained with prototypes. The CAD/CAE systems (which is based on computer simulation of physical phenomena) are effective in reducing the number of useless prototypes of a new product. These kinds of conventional CAD/CAE systems do not provide a function to reflect the experimental results to the redesign process, however. This paper proposes a methodology to establish the CAD system, which possesses the engineering model of a designed object in the model database, and refines the model on the basis of experimental results of prototype. The blackboard inference model has been applied to infer model refinement and redesign counterplan by using insufficient knowledge of R&D process of new products.

  • PDF

Realtime Analysis of Sasang Constitution Types from Facial Features Using Computer Vision and Machine Learning

  • Abdullah;Shah Mahsoom Ali;Hee-Cheol Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.256-266
    • /
    • 2024
  • Sasang constitutional medicine (SCM) is one of the best traditional therapeutic approaches used in Korea. SCM prioritizes personalized treatment that considers the unique constitution of an individual and encompasses their physical characteristics, personality traits, and susceptibility to specific diseases. Facial features are essential for diagnosing Sasang constitutional types (SCTs). This study aimed to develop a real-time artificial intelligence-based model for diagnosing SCTs using facial images, building an SCTs prediction model based on a machine learning method. Facial features from all images were extracted to develop this model using feature engineering and machine learning techniques. The fusion of these features was used to train the AI model. We used four machine learning algorithms, namely, random forest (RF), multilayer perceptron (MLP), gradient boosting machine (GBM), and extreme gradient boosting (XGB), to investigate SCTs. The GBM outperformed all the other models. The highest accuracy achieved in the experiment was 81%, indicating the robustness of the proposed model and suitability for real-time applications.

The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning (설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형)

  • Taeho Hong;Jonggwan Won;Eunmi Kim;Minsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.129-148
    • /
    • 2023
  • Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.

A Study on the Evaluation of Optimal Program Applicability for Face Recognition Using Machine Learning (기계학습을 이용한 얼굴 인식을 위한 최적 프로그램 적용성 평가에 대한 연구)

  • Kim, Min-Ho;Jo, Ki-Yong;You, Hee-Won;Lee, Jung-Yeal;Baek, Un-Bae
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • This study is the first attempt to raise face recognition ability through machine learning algorithm and apply to CRM's information gathering, analysis and application. In other words, through face recognition of VIP customer in distribution field, we can proceed more prompt and subdivided customized services. The interest in machine learning, which is used to implement artificial intelligence, has increased, and it has become an age to automate it by using machine learning beyond the way that a person directly models an object recognition process. Among them, Deep Learning is evaluated as an advanced technology that shows amazing performance in various fields, and is applied to various fields of image recognition. Face recognition, which is widely used in real life, has been developed to recognize criminals' faces and catch criminals. In this study, two image analysis models, TF-SLIM and Inception-V3, which are likely to be used for criminal face recognition, were selected, analyzed, and implemented. As an evaluation criterion, the image recognition model was evaluated based on the accuracy of the face recognition program which is already being commercialized. In this experiment, it was evaluated that the recognition accuracy was good when the accuracy of the image classification was more than 90%. A limit of our study which is a way to raise face recognition is left as a further research subjects.

A Study on the Remaining Useful Life Prediction Performance Variation based on Identification and Selection by using SHAP (SHAP를 활용한 중요변수 파악 및 선택에 따른 잔여유효수명 예측 성능 변동에 대한 연구)

  • Yoon, Yeon Ah;Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Recently, the importance of preventive maintenance has been emerging since failures in a complex system are automatically detected due to the development of artificial intelligence techniques and sensor technology. Therefore, prognostic and health management (PHM) is being actively studied, and prediction of the remaining useful life (RUL) of the system is being one of the most important tasks. A lot of researches has been conducted to predict the RUL. Deep learning models have been developed to improve prediction performance, but studies on identifying the importance of features are not carried out. It is very meaningful to extract and interpret features that affect failures while improving the predictive accuracy of RUL is important. In this paper, a total of six popular deep learning models were employed to predict the RUL, and identified important variables for each model through SHAP (Shapley Additive explanations) that one of the explainable artificial intelligence (XAI). Moreover, the fluctuations and trends of prediction performance according to the number of variables were identified. This paper can suggest the possibility of explainability of various deep learning models, and the application of XAI can be demonstrated. Also, through this proposed method, it is expected that the possibility of utilizing SHAP as a feature selection method.

Bioimage Analyses Using Artificial Intelligence and Future Ecological Research and Education Prospects: A Case Study of the Cichlid Fishes from Lake Malawi Using Deep Learning

  • Joo, Deokjin;You, Jungmin;Won, Yong-Jin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.

Development of an Artificial Intelligence Integrated Korean Language Education Program

  • Dae-Sun Kim;Eun-Hee Goo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • Amidst the onset of the Fourth Industrial Revolution and the prominence of artificial intelligence, societal structures are undergoing significant changes. There is a heightened global interest in AI education for nurturing future talents. Consequently, this research aims to develop an AI-integrated Korean language curriculum for first-year high school students, utilizing the ADDIE model for instructional program development. To assess the program's effectiveness, pre-post assessments were conducted on future core competencies (Collaboration, Communication, Critical Thinking, Creativity) and knowledge information processing skills. The curriculum, spanning nine sessions and incorporating four small projects, sought to provide students with a new experience of AI-integrated Korean language education. As a result, students who participated in the program demonstrated improvement in future core competencies across all areas, and positive outcomes were observed in satisfaction levels and qualitative analysis. Through these findings, it is suggested that this program successfully integrates artificial intelligence into high school Korean language education, potentially contributing to the cultivation of future talents among students.

An Artificial Intelligence Evaluation on FSM-Based Game NPC (FSM 기반의 게임 NPC 인공 지능 평가)

  • Lee, MyounJae
    • Journal of Korea Game Society
    • /
    • v.14 no.5
    • /
    • pp.127-136
    • /
    • 2014
  • NPC in game is an important factor to increase the fun of the game by cooperating with player or confrontation with player. NPC's behavior patterns in the previous games are limited. Also, there is not much difference in NPC's ability among the existing games because it's designed to FSM. Therefore, players who have matched with NPCs which have the characteristics may have difficulty to play. This paper is for improving the problem and production and evaluation of the game NPC behavior model based on wolves hunting model in real life. To achieve it, first, the research surveys and studies behavior states for wolves to capture prey in the real world. Secondly, it is implemented using the Unity3D engine. Third, this paper compares the implemented state transition probability to state transition probability in real world, state transition probability in general game. The comparison shows that the number of state transitions of NPCs increases, proportions of implemented NPC behavior patterns converges to probabilities of state transition in real-world. This means that the aggressive behavior pattern of NPC implemented is similar to the wolf hunting behavior pattern of the real world, and it can thereby provide more player experience.