Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.
Recently, artificial intelligence (AI)-enabled products and services such as smartphones, smart speakers, chatbots are being released due to advances in AI technology. Thus researchers making effort to reveal that consumers' intention to adopt AI-enabled products. Yet, little is known about the intended adoption of AI-enabled products. Because most of studies has been not consideredthe perceived utility value of consumers for each attribute by classified based on the characteristics of AI-enabled products. Therefore, the purpose of this study is to investigate the difference in importance between attributes that affect the intention to adopt of AI-enabled products. For this, first, identified and classified the attributes of AI-enabled products based on IS Success Model of DeLone and McLean. Second, measured the utility value of each attribute on the adoption of AI-enabled products through conjoint analysis. And we employed construal level theory to see whether there are differences in the relative importance of AI-enabled products attributes depending on the temporal distance. Third, we segmented the market based on the utility value of each respondent through cluster analysis and tried to understand the characteristics and needs of consumers in each segment market. We expect to provide theoretical implications for conceptually structured attributes and factors of AI-enabled products and practical implications for how development efforts of AI-enabled products are needed to reach consumers need for each segment.
Journal of the military operations research society of Korea
/
v.22
no.1
/
pp.67-80
/
1996
Artificial Intelligence(AI) techniques and Object-Oriented(OO) techniques contribute to the simulation modeling of the complex systems. AI techniques are suitable to model human reasoning in the simulation. While OO techniques have advantages of re-usability, maintainability and extendability of the software. Thus, in this paper, we design a knowledge-based object-oriented simulation model, particularly for the logistics analysis of military armor vehicles. The simulation model consists of three modules i.e., scenario, simulation mechanism, and inference engine. The model is designed within the OO paradigm and implemented by using the C++ language. An example case of using the model for the logistic analysis is included.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.4
/
pp.115-119
/
2023
The natural language processing models used in current artificial intelligence are huge, causing various difficulties in processing and analyzing data in real time. In order to solve these difficulties, we proposed a method to improve the efficiency of processing by using less memory and checked the performance of the proposed model. The technique applied in this paper to evaluate the performance of the proposed model is to divide the large corpus by adjusting the number of attention heads and embedding size of the BERT[1] model to be small, and the results are calculated by averaging the output values of each forward. In this process, a random offset was assigned to the sentences at every epoch to provide diversity in the input data. The model was then fine-tuned for classification. We found that the split processing model was about 12% less accurate than the unsplit model, but the number of parameters in the model was reduced by 56%.
In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.5
/
pp.162-177
/
2020
The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.
Journal of the Korea Institute of Military Science and Technology
/
v.25
no.5
/
pp.513-521
/
2022
This study deals with an AI architecture model for collecting battlefield data using the tactical C4I system. Based on this model, the artificial staff can be utilized in tactical echelon. In the current structure of the Army's tactical C4I system, Servers are operated by brigade level and above and divided into an active and a standby server. In this C4I system structure, the AI server must also be installed in each unit and must be switched when the C4I server is switched. The tactical C4I system operates a server(DB) for each unit, so data matching is partially delayed or some data is not matched in the inter-working process between servers. To solve these issues, this study presents an operation concept so that all of alternate server can be integrated based on virtualization technology, which is used as an source data for AI Meta DB. In doing so, this study can provide criteria for the AI architectural model of the ground tactical echelon.
The detection of all the symbols transmitted simultaneously in multiuser systems using limited wireless resources is challenging. Traditional model-based methods show high performance with perfect channel state information (CSI); however, severe performance degradation will occur if perfect CSI cannot be acquired. In contrast, data-driven methods perform slightly worse than model-based methods in terms of symbol error ratio performance in perfect CSI states; however, they are also able to overcome extreme performance degradation in imperfect CSI states. This study proposes a novel deep learning-based method by improving a state-of-the-art data-driven technique called deep soft interference cancellation (DSIC). The enhanced DSIC (EDSIC) method detects multiuser symbols in a fully sequential manner and uses an efficient neural network structure to ensure high performance. Additionally, error-propagation mitigation techniques are used to ensure robustness against channel uncertainty. The EDSIC guarantees a performance that is very close to the optimal performance of the existing model-based methods in perfect CSI environments and the best performance in imperfect CSI environments.
The ability to understand given environments and plan a sequence of actions leading to goal state is crucial for personal service robots. With recent advancements in deep learning, numerous studies have proposed methods for state representation in planning. However, previous works lack explicit information about relationships between objects when the state observation is converted to a single visual embedding containing all state information. In this paper, we introduce graph-based state representation that incorporates both object and relationship features. To leverage these advantages in addressing the task planning problem, we propose a Graph Neural Network (GNN)-based subgoal prediction model. This model can extract rich information about object and their interconnected relationships from given state graph. Moreover, a search-based algorithm is integrated with pre-trained subgoal prediction model and state transition module to explore diverse states and find proper sequence of subgoals. The proposed method is trained with synthetic task dataset collected in simulation environment, demonstrating a higher success rate with fewer additional searches compared to baseline methods.
Hodhod, Osama A.;Said, Tamer E.;Ataya, Abdulaziz M.
Computers and Concrete
/
v.21
no.5
/
pp.513-523
/
2018
Time dependent strain due to creep is a significant factor in structural design. Multi-gene genetic programming (MGGP) and artificial neural network (ANN) are used to develop two models for prediction of creep compliance in concrete. The first model was developed by MGGP technique and the second model by hybridized MGGP-ANN. In the MGGP-ANN, the ANN is working in parallel with MGGP to predict errors in MGGP model. A total of 187 experimental data sets that contain 4242 data points are filtered from the NU-ITI database. These data are used in developing the MGGP and MGGP-ANN models. These models contain six input variables which are: average compressive strength at 28 days, relative humidity, volume to surface ratio, cement type, age at start of loading and age at the creep measurement. Practical equation based on MGGP was developed. A parametric study carried out with a group of hypothetical data generated among the range of data used to check the generalization ability of MGGP and MGGP-ANN models. To confirm validity of MGGP and MGGP-ANN models; two creep prediction code models (ACI209 and CEB), two empirical models (B3 and GL 2000) are used to compare their results with NU-ITI database.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.