• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.031 seconds

Application Strategies of Superintelligent AI in the Defense Sector: Emphasizing the Exploration of New Domains and Centralizing Combat Scenario Modeling (초거대 인공지능의 국방 분야 적용방안: 새로운 영역 발굴 및 전투시나리오 모델링을 중심으로)

  • PARK GUNWOO
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • The future military combat environment is rapidly expanding the role and importance of artificial intelligence (AI) in defense, aligning with the current trends of declining military populations and evolving dynamics. Particularly, in the civilian sector, AI development has surged into new domains based on foundation models, such as OpenAI's Chat-GPT, categorized as Super-Giant AI or Hyperscale AI. The U.S. Department of Defense has organized Task Force Lima under the Chief Digital and AI Office (CDAO) to conduct research on the application of Large Language Models (LLM) and generative AI. Advanced military nations like China and Israel are also actively researching the integration of Super-Giant AI into their military capabilities. Consequently, there is a growing need for research within our military regarding the potential applications and fields of application for Super-Giant AI in weapon systems. In this paper, we compare the characteristics and pros and cons of specialized AI and Super-Giant AI (Foundation Models) and explore new application areas for Super-Giant AI in weapon systems. Anticipating future application areas and potential challenges, this research aims to provide insights into effectively integrating Super-Giant Artificial Intelligence into defense operations. It is expected to contribute to the development of military capabilities, policy formulation, and international security strategies in the era of advanced artificial intelligence.

Verification of the Suitability of Fine Dust and Air Quality Management Systems Based on Artificial Intelligence Evaluation Models

  • Heungsup Sim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.165-170
    • /
    • 2024
  • This study aims to verify the accuracy of the air quality management system in Yangju City using an artificial intelligence (AI) evaluation model. The consistency and reliability of fine dust data were assessed by comparing public data from the Ministry of Environment with data from Yangju City's air quality management system. To this end, we analyzed the completeness, uniqueness, validity, consistency, accuracy, and integrity of the data. Exploratory statistical analysis was employed to compare data consistency. The results of the AI-based data quality index evaluation revealed no statistically significant differences between the two datasets. Among AI-based algorithms, the random forest model demonstrated the highest predictive accuracy, with its performance evaluated through ROC curves and AUC. Notably, the random forest model was identified as a valuable tool for optimizing the air quality management system. This study confirms that the reliability and suitability of fine dust data can be effectively assessed using AI-based model performance evaluation, contributing to the advancement of air quality management strategies.

A Study on the Recognition of Face Based on CNN Algorithms (CNN 알고리즘을 기반한 얼굴인식에 관한 연구)

  • Son, Da-Yeon;Lee, Kwang-Keun
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Recently, technologies are being developed to recognize and authenticate users using bioinformatics to solve information security issues. Biometric information includes face, fingerprint, iris, voice, and vein. Among them, face recognition technology occupies a large part. Face recognition technology is applied in various fields. For example, it can be used for identity verification, such as a personal identification card, passport, credit card, security system, and personnel data. In addition, it can be used for security, including crime suspect search, unsafe zone monitoring, vehicle tracking crime.In this thesis, we conducted a study to recognize faces by detecting the areas of the face through a computer webcam. The purpose of this study was to contribute to the improvement in the accuracy of Recognition of Face Based on CNN Algorithms. For this purpose, We used data files provided by github to build a face recognition model. We also created data using CNN algorithms, which are widely used for image recognition. Various photos were learned by CNN algorithm. The study found that the accuracy of face recognition based on CNN algorithms was 77%. Based on the results of the study, We carried out recognition of the face according to the distance. Research findings may be useful if face recognition is required in a variety of situations. Research based on this study is also expected to improve the accuracy of face recognition.

Research on Developing a Conversational AI Callbot Solution for Medical Counselling

  • Won Ro LEE;Jeong Hyon CHOI;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2023
  • In this study, we explored the potential of integrating interactive AI callbot technology into the medical consultation domain as part of a broader service development initiative. Aimed at enhancing patient satisfaction, the AI callbot was designed to efficiently address queries from hospitals' primary users, especially the elderly and those using phone services. By incorporating an AI-driven callbot into the hospital's customer service center, routine tasks such as appointment modifications and cancellations were efficiently managed by the AI Callbot Agent. On the other hand, tasks requiring more detailed attention or specialization were addressed by Human Agents, ensuring a balanced and collaborative approach. The deep learning model for voice recognition for this study was based on the Transformer model and fine-tuned to fit the medical field using a pre-trained model. Existing recording files were converted into learning data to perform SSL(self-supervised learning) Model was implemented. The ANN (Artificial neural network) neural network model was used to analyze voice signals and interpret them as text, and after actual application, the intent was enriched through reinforcement learning to continuously improve accuracy. In the case of TTS(Text To Speech), the Transformer model was applied to Text Analysis, Acoustic model, and Vocoder, and Google's Natural Language API was applied to recognize intent. As the research progresses, there are challenges to solve, such as interconnection issues between various EMR providers, problems with doctor's time slots, problems with two or more hospital appointments, and problems with patient use. However, there are specialized problems that are easy to make reservations. Implementation of the callbot service in hospitals appears to be applicable immediately.

A Study on a car Insurance purchase Prediction Using Two-Class Logistic Regression and Two-Class Boosted Decision Tree

  • AN, Su Hyun;YEO, Seong Hee;KANG, Minsoo
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • This paper predicted a model that indicates whether to buy a car based on primary health insurance customer data. Currently, automobiles are being used to land transportation and living, and the scope of use and equipment is expanding. This rapid increase in automobiles has caused automobile insurance to emerge as an essential business target for insurance companies. Therefore, if the car insurance sales are predicted and sold using the information of existing health insurance customers, it can generate continuous profits in the insurance company's operating performance. Therefore, this paper aims to analyze existing customer characteristics and implement a predictive model to activate advertisements for customers interested in such auto insurance. The goal of this study is to maximize the profits of insurance companies by devising communication strategies that can optimize business models and profits for customers. This study was conducted through the Microsoft Azure program, and an automobile insurance purchase prediction model was implemented using Health Insurance Cross-sell Prediction data. The program algorithm uses Two-Class Logistic Regression and Two-Class Boosted Decision Tree at the same time to compare two models and predict and compare the results. According to the results of this study, when the Threshold is 0.3, the AUC is 0.837, and the accuracy is 0.833, which has high accuracy. Therefore, the result was that customers with health insurance could induce a positive reaction to auto insurance purchases.

A Study on the Comparison of Predictive Models of Cardiovascular Disease Incidence Based on Machine Learning

  • Ji Woo SEOK;Won ro LEE;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, a study was conducted to compare the prediction model of cardiovascular disease occurrence. It is the No.1 disease that accounts for 1/3 of the world's causes of death, and it is also the No. 2 cause of death in Korea. Primary prevention is the most important factor in preventing cardiovascular diseases before they occur. Early diagnosis and treatment are also more important, as they play a role in reducing mortality and morbidity. The Results of an experiment using Azure ML, Logistic Regression showed 88.6% accuracy, Decision Tree showed 86.4% accuracy, and Support Vector Machine (SVM) showed 83.7% accuracy. In addition to the accuracy of the ROC curve, AUC is 94.5%, 93%, and 92.4%, indicating that the performance of the machine learning algorithm model is suitable, and among them, the results of applying the logistic regression algorithm model are the most accurate. Through this paper, visualization by comparing the algorithms can serve as an objective assistant for diagnosis and guide the direction of diagnosis made by doctors in the actual medical field.

Analysis of the Influence Factors on Intention of Use for Artificial Intelligence-Based Health Functional Food Recommended Service (인공지능기반 건강기능식품 추천서비스 사용의도에 미치는 영향요인 분석)

  • Yun, Heajeang;Kim, Yeongdae;Kim, Ji-Young;Shin, Yongtae
    • Journal of Information Technology Services
    • /
    • v.20 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • The health functional food market continues to grow, and according to that trend, the subdivision sales of personalized health functional foods, which have been legally prohibited, will be operated as a special regulatory pilot project. Personalized health functional food recommendations have a variety of personalized indicators to consider, and it is believed that algorithmic methods will be needed to proceed in a customized manner considering all of them. This study aims to contribute to the development of the AI-based health functional food recommendation service by studying factors that affect the use of the AI-based health functional food recommendation service. This paper analyzed the intention of use for AI-based health functional food recommendation service based on the information system success model and Technology Acceptance Model. This study considered information quality factors, service quality factor, and system quality factor as independent variables influencing perceived usefulness, perceived ease of use and trust. For empirical analysis, 406 questionnaires were used and the collected data were performed using AMOS 22.0 and SPSS 22.0. Research has shown that the accuracy, timeliness, empathy and availability have a positive effect on usefulness. Understandability and availability has been shown to have a positive effect on ease of use. The accuracy, understandability, empathy and availibility has been shown to have a positive impact on Trust. Usefulness, ease of use and trust all have been shown to have a positive influence on intention of use.

Reinforcement Learning Model for Mass Casualty Triage Taking into Account the Medical Capability (의료능력을 고려한 대량전상자 환자분류 강화학습 모델)

  • Byeongho Park;Namsuk Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.44-59
    • /
    • 2023
  • Purpose: In the event of mass casualties, triage must be done promptly and accurately so that as many patients as possible can be recovered and returned to the battlefield. However, medical personnel have received many tasks with less manpower, and the battlefield for classifying patients is too complex and uncertain. Therefore, we studied an artificial intelligence model that can assist and replace medical personnel on the battlefield. Method: The triage model is presented using reinforcement learning, a field of artificial intelligence. The learning of the model is conducted to find a policy that allows as many patients as possible to be treated, taking into account the condition of randomly set patients and the medical capability of the military hospital. Result: Whether the reinforcement learning model progressed well was confirmed through statistical graphs such as cumulative reward values. In addition, it was confirmed through the number of survivors whether the triage of the learned model was accurate. As a result of comparing the performance with the rule-based model, the reinforcement learning model was able to rescue 10% more patients than the rule-based model. Conclusion: Through this study, it was found that the triage model using reinforcement learning can be used as an alternative to assisting and replacing triage decision-making of medical personnel in the case of mass casualties.

Development of Vaccine with Artificial Intelligence: By Analyzing OP Code Features Based on Text and Image Dataset (OP Code 특징 기반의 텍스트와 이미지 데이터셋 연구를 통한 인공지능 백신 개발)

  • Choi, Hyo-Kyung;Lee, Se-Eun;Lee, Ju-Hyun;Hong, Rae-Young;Choi, Won-Hyok;Kim, Hyung-Jong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1019-1026
    • /
    • 2019
  • Due to limitations of existing methods for detecting newly introduced malware, the importance of the development of artificial intelligence vaccines arises. Existing artificial intelligence vaccines have a disadvantage that the accuracy of the detection rate is low because those vaccines do not scan all parts of the file. In this paper, we suggest an enhanced method for detecting malware which is composed of unique OP Code features in the malware files. Specifically, we tested the method with text datasets trained on Random Forest algorithm and with image datasets trained on the Inception V3 model. As a result, the highest accuracy of the detection rate was about 80%.

A Case Study on an Artificial Intelligence Fashion Curation Practice Subject through Industrial-academic Project-based Learning (산학 연계 프로젝트 기반 학습(PBL)을 활용한 AI 패션 큐레이션 실습 교과목 운영 사례 연구)

  • An, Hyosun;Park, Minjung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.3
    • /
    • pp.337-346
    • /
    • 2021
  • In the fourth industrial revolution, fashion students are expected to work with various technologies to show creativity. This study aimed to conduct project-based learning(PBL) in collaboration with industry experts to design and operate artificial intelligence(AI) in the practice subject of fashion curation through the industrial academic teaching method. We first looked at teaching methods and strategies incorporating PBL in various academic fields. Next, we analyzed fashion projects and fashion curation services applying AI. Then through the question-and-answer method and by consulting with industry experts, we developed a curriculum for AI fashion curation, applying PBL(fashion market and trend analysis; new styles and time, place, and occasion planning; AI machine learning data set production; curation model development; and evaluation) suitable for the university's educational environment, information technology company conditions, and fashion students. As part of a close cooperation system with the industry, we conducted a 15-week Fashion Project II (Capstone Design) course and evaluated the outcomes and student satisfaction with the course. Students were able to develop new style, and time, place, and occasion categories and to utilize strategies for AI fashion curation services reflecting the unique needs of Millennials and Generation Z. Students showed high satisfaction with the curriculum. Further, it was confirmed that the study successfully applied PBL in class using AI technology in fashion education.