• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.03 seconds

Forecasting Corporate Bankruptcy with Artificial Intelligence (인공지능기법을 이용한 기업부도 예측)

  • Oh, Woo-Seok;Kim, Jin-Hwa
    • Journal of Industrial Convergence
    • /
    • v.15 no.1
    • /
    • pp.17-32
    • /
    • 2017
  • The purpose of this study is to evaluate financial models that can predict corporate bankruptcy with diverse studies on evaluation models. The study uses discriminant analysis, logistic model, decision tree, neural networks as analyses tools with 18 input variables as major financial factors. The study found meaningful variables such as current ratio, return on investment, ordinary income to total assets, total debt turn over rate, interest expenses to sales, net working capital to total assets and it also found that prediction performance of suggested method is a bit low compared to that in literature review. It is because the studies in the past uses the data set on the listed companies or companies audited from outside. And this study uses data on the companies whose credibility is not verified enough. Another finding is that models based on decision tree analysis and discriminant analysis showed the highest performance among many bankruptcy forecasting models.

  • PDF

A Study on the Realization of Virtual Simulation Face Based on Artificial Intelligence

  • Zheng-Dong Hou;Ki-Hong Kim;Gao-He Zhang;Peng-Hui Li
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.152-158
    • /
    • 2023
  • In recent years, as computer-generated imagery has been applied to more industries, realistic facial animation is one of the important research topics. The current solution for realistic facial animation is to create realistic rendered 3D characters, but the 3D characters created by traditional methods are always different from the actual characters and require high cost in terms of staff and time. Deepfake technology can achieve the effect of realistic faces and replicate facial animation. The facial details and animations are automatically done by the computer after the AI model is trained, and the AI model can be reused, thus reducing the human and time costs of realistic face animation. In addition, this study summarizes the way human face information is captured and proposes a new workflow for video to image conversion and demonstrates that the new work scheme can obtain higher quality images and exchange effects by evaluating the quality of No Reference Image Quality Assessment.

Concrete crack detection method using artificial intelligence (인공지능을 이용한 콘크리트 균열탐지 방법)

  • Song, Won-Il;Ramos-Sebastian, Armando;Lee, Ja-Sung;Ji, Dong-Min;Park, Se-Jin;Choi, Geon;Kim, Sung-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.245-246
    • /
    • 2022
  • Typically, the methods of crack detection on concrete structures include some problems, such as a low accuracy and expensive. To solve these problems, we proposed a neural network-based crack search method. The proposed algorithm goes through three convolutions and is classified into crack and non-crack through the softmax layer. As a result of the performance evaluation, cracks can be detected with an accuracy of 99.4 and 99.34 % at the training model and the validation model, respectively.

  • PDF

A Study on Classification Models for Predicting Bankruptcy Based on XAI (XAI 기반 기업부도예측 분류모델 연구)

  • Jihong Kim;Nammee Moon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.333-340
    • /
    • 2023
  • Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology have been used. In the financial industry, even if the performance of the new predictive models is excellent, it should be accompanied by an intuitive explanation of the basis on which the result was determined. Recently, the US, EU, and South Korea have commonly presented the right to request explanations of algorithms, so transparency in the use of AI in the financial sector must be secured. In this paper, an artificial intelligence-based interpretable classification prediction model was proposed using corporate bankruptcy data that was open to the outside world. First, data preprocessing, 5-fold cross-validation, etc. were performed, and classification performance was compared through optimization of 10 supervised learning classification models such as logistic regression, SVM, XGBoost, and LightGBM. As a result, LightGBM was confirmed as the best performance model, and SHAP, an explainable artificial intelligence technique, was applied to provide a post-explanation of the bankruptcy prediction process.

Performance Analysis of Speech Recognition Model based on Neuromorphic Architecture of Speech Data Preprocessing Technique (음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반 음성 인식 모델의 성능 분석)

  • Cho, Jinsung;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2022
  • SNN (Spiking Neural Network) operating in neuromorphic architecture was created by mimicking human neural networks. Neuromorphic computing based on neuromorphic architecture requires relatively lower power than typical deep learning techniques based on GPUs. For this reason, research to support various artificial intelligence models using neuromorphic architecture is actively taking place. This paper conducted a performance analysis of the speech recognition model based on neuromorphic architecture according to the speech data preprocessing technique. As a result of the experiment, it showed up to 84% of speech recognition accuracy performance when preprocessing speech data using the Fourier transform. Therefore, it was confirmed that the speech recognition service based on the neuromorphic architecture can be effectively utilized.

Two Circle-based Aircraft Head-on Reinforcement Learning Technique using Curriculum (커리큘럼을 이용한 투서클 기반 항공기 헤드온 공중 교전 강화학습 기법 연구)

  • Insu Hwang;Jungho Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.352-360
    • /
    • 2023
  • Recently, AI pilots using reinforcement learning are developing to a level that is more flexible than rule-based methods and can replace human pilots. In this paper, a curriculum was used to help head-on combat with reinforcement learning. It is not easy to learn head-on with a reinforcement learning method without a curriculum, but in this paper, through the two circle-based head-on air combat learning technique, ownship gradually increase the difficulty and become good at head-on combat. On the two-circle, the ATA angle between the ownship and target gradually increased and the AA angle gradually decreased while learning was conducted. By performing reinforcement learning with and w/o curriculum, it was engaged with the rule-based model. And as the win ratio of the curriculum based model increased to close to 100 %, it was confirmed that the performance was superior.

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Forest Change Detection Service Based on Artificial Intelligence Learning Data (인공지능 학습용 데이터 기반의 산림변화탐지 서비스)

  • Chung, Hankun;Kim, Jong-in;Ko, Sun Young;Chai, Seunggi;Shin, Youngtae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.347-354
    • /
    • 2022
  • Since the era of the 4th industrial revolution has been ripe, the use of artificial intelligence(AI) based on massive data is beginning to be actively applied in various fields. However, as the process of analyzing forest species is carried out manually, many errors are occurring. Therefore, in this paper, about 60,000 pieces of AI learning data were automatically analyzed for pine, larch, conifer, and broadleaf trees of aerial photographs and pseudo images in the metropolitan area, and an AI model was developed to distinguish tree species. Through this, it is expected to increase in work efficiency by using the tree species division image as basic data when producing forest change detection and forest field topics.

Sparse Class Processing Strategy in Image-based Livestock Defect Detection (이미지 기반 축산물 불량 탐지에서의 희소 클래스 처리 전략)

  • Lee, Bumho;Cho, Yesung;Yi, Mun Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1720-1728
    • /
    • 2022
  • The industrial 4.0 era has been opened with the development of artificial intelligence technology, and the realization of smart farms incorporating ICT technology is receiving great attention in the livestock industry. Among them, the quality management technology of livestock products and livestock operations incorporating computer vision-based artificial intelligence technology represent key technologies. However, the insufficient number of livestock image data for artificial intelligence model training and the severely unbalanced ratio of labels for recognizing a specific defective state are major obstacles to the related research and technology development. To overcome these problems, in this study, combining oversampling and adversarial case generation techniques is proposed as a method necessary to effectively utilizing small data labels for successful defect detection. In addition, experiments comparing performance and time cost of the applicable techniques were conducted. Through experiments, we confirm the validity of the proposed methods and draw utilization strategies from the study results.