• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.026 seconds

Selecting Optimal Algorithms for Stroke Prediction: Machine Learning-Based Approach

  • Kyung Tae CHOI;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we compare three models (logistic regression, Random Forest, and XGBoost) for predicting stroke occurrence using data from the Korea National Health and Nutrition Examination Survey (KNHANES). We evaluated these models using various metrics, focusing mainly on recall and F1 score to assess their performance. Initially, the logistic regression model showed a satisfactory recall score among the three models; however, it was excluded from further consideration because it did not meet the F1 score threshold, which was set at a minimum of 0.5. The F1 score is crucial as it considers both precision and recall, providing a balanced measure of a model's accuracy. Among the models that met the criteria, XGBoost showed the highest recall rate and showed excellent performance in stroke prediction. In particular, XGBoost shows strong performance not only in recall, but also in F1 score and AUC, so it should be considered the optimal algorithm for predicting stroke occurrence. This study determines that the performance of XGBoost is optimal in the field of stroke prediction.

Optimization of Action Recognition based on Slowfast Deep Learning Model using RGB Video Data (RGB 비디오 데이터를 이용한 Slowfast 모델 기반 이상 행동 인식 최적화)

  • Jeong, Jae-Hyeok;Kim, Min-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1049-1058
    • /
    • 2022
  • HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.

Proposal Model for Programming Numerical Control Lathe Basis on the Concept by Features

  • N.Ben Yahia;Lee, Woo-Young;B. Hadj Sassi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.27-33
    • /
    • 2001
  • The aim of the present work is to propose a model for Computer Aided programming of numerical Control lathe. This model is based on the concept by features. It has been developed in an Artificial Intelligence environment, that offers a rapidity as well as a precision for NC code elaboration. In this study a pre-processor has been elaborated to study the geometry of turning workpiece. This pre-processor is a hybrid system which combine a module of design by features and a module of features recognition for a piece provided from an other CAD software. Then, we have conceived a processor that is the heart of the CAD/CAM software. The main functions are to study the fixture of the workpiece, to choose automatically manufacturing cycles, to choose automatically cutting tools (the most relevant), to simulate tool path of manufacturing and calculate cutting conditions, end to elaborate a typical manufacturing process. Finally, the system generates the NC program from information delivered by the processor.

  • PDF

Software Development for Auto-Generation of Interlocking Knowledgebase Using Artificial Intelligence Approach (인공지능기법에 근거한 철도 전자연동장치의 연동 지식베이스 자동구축 S/W 개발)

  • Ko, Yun-Seok;Kim, Jong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.800-806
    • /
    • 1999
  • This paper proposes IIKBAG(Intelligent Interlocking Knowledge Base Generator) which can build automatically the interlocking knowledge base utilized as the real-time interlocking strategy of the electronic interlocking system in order to enhance it's reliability and expansion. The IIKBAG consists of the inference engine and the knowledge base. The former has an auto-learning function which searches all the train routes for the given station model based on heuristic search technique while dynamically searching the model, and then generates automatically the interlocking patterns obtained from the interlocking relations of signal facilities on the routes. The latter is designed as the structure which the real-time expert system embedded on IS(Interlocking System) can use directly in order to enhances the reliability and accuracy. The IIKBAG is implemented in C computer language for the purpose of the build and interface of the station structure database. And, a typical station model is simulated to prove the validity of the proposed IIKBAG.

  • PDF

A study on Natural Disaster Prediction Using Multi-Class Decision Forest

  • Eom, Tae-Hyuk;Kim, Kyung-A
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In this paper, a study was conducted to predict natural disasters in Afghanistan based on machine learning. Natural disasters need to be prepared not only in Korea but also in other vulnerable countries. Every year in Afghanistan, natural disasters(snow, earthquake, drought, flood) cause property and casualties. We decided to conduct research on this phenomenon because we thought that the damage would be small if we were to prepare for it. The Azure Machine Learning Studio used in the study has the advantage of being more visible and easier to use than other Machine Learning tools. Decision Forest is a model for classifying into decision tree types. Decision forest enables intuitive analysis as a model that is easy to analyze results and presents key variables and separation criteria. Also, since it is a nonparametric model, it is free to assume (normality, independence, equal dispersion) required by the statistical model. Finally, linear/non-linear relationships can be searched considering interactions between variables. Therefore, the study used decision forest. The study found that overall accuracy was 89 percent and average accuracy was 97 percent. Although the results of the experiment showed a little high accuracy, items with low natural disaster frequency were less accurate due to lack of learning. By learning and complementing more data, overall accuracy can be improved, and damage can be reduced by predicting natural disasters.

Explanation of Influence Variables and Development of Tight Oil Productivity Prediction Model by Production Period using XAI Algorithm (XAI를 활용한 생산기간에 따른 치밀오일 생산성 예측 모델 개발 및 영향변수 설명)

  • Han, Dong-kwon;An, Yu-bin;Kwon, Sun-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.484-487
    • /
    • 2022
  • This study suggests an XAI-based machine learning method to predict the productivity of tight oil reservoirs according to the production period. The XAI algorithm refers to interpretable artificial intelligence and provides the basis for the predicted result and the validity of the derivation process. In this study, we proposed a supervised learning model that predicts productivity in the early and late stages of production after performing data preprocessing based on field data. and then based on the model results, the factors affecting the productivity prediction model were analyzed using XAI.

  • PDF

Preliminary Study for Vision A.I-based Automated Quality Supervision Technique of Exterior Insulation and Finishing System - Focusing on Form Bonding Method - (인공지능 영상인식 기반 외단열 공법 품질감리 자동화 기술 기초연구 - 단열재 습식 부착방법을 중심으로 -)

  • Yoon, Sebeen;Lee, Byoungmin;Lee, Changsu;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.133-134
    • /
    • 2022
  • This study proposed vision artificial intelligence-based automated supervision technology for external insulation and finishing system, and basic research was conducted for it. The automated supervision technology proposed in this study consists of the object detection model (YOLOv5) and the part that derives necessary information based on the object detection result and then determines whether the external insulation-related adhesion regulations are complied with. As a result of a test, the judgement accuracy of the proposed model showed about 70%. The results of this study are expected to contribute to securing the external insulation quality and further contributing to the realization of energy-saving eco-friendly buildings. As further research, it is necessary to develop a technology that can improve the accuracy of the object detection model by supplementing the number of data for model training and determine additional related regulations such as the adhesive area ratio.

  • PDF

A Theoretical Study on the Knowledge-Based System for Design (디자인을 위한 지식기반시스템의 이론적 고찰)

  • 김태현
    • Korean Institute of Interior Design Journal
    • /
    • no.7
    • /
    • pp.70-78
    • /
    • 1996
  • Artificial Intelligence is generally concerned with tasks whose execution appears to involve some intelligence if done by humans, and knowledge-based system ( in other word, expert system) is the research about the specific domain. This concept also can be applied to interior design field. So the purpose of this study is in reconstructing the accomplishment of artificial Intelligence and knowledge engineering, searching basic theories and cased to knowledge engineering , searching basic theories and cases to formulate knowledge -based design system, and testing the posibilities how the design information can be dealt in computer system. Given that recognition , two major problems must be solved before knowledge-based CAD systems could be come practical : Firstly , identification of the interior of designers use .Secondly , representing this knowledge in a computationally effective manner. I had discussed the basic concepts on which to base a knowledge- based design model, knowledge representation schemes, and problem solving, I could find the possibility which the knowledge-based system can be applied to the interior design according to this study. But there are non-deductive, often irrational and now easily computerized design process in interior design. Those are problems which are relevant to the machine learning and the creativity in design. So there should be a lot of research about the machine learning and the creatively in design in order to construct successfully intelligent knowledge-based design system.

  • PDF

Comparison of online video(OTT) content production technology based on artificial intelligence customized recommendation service (인공지능 맞춤 추천서비스 기반 온라인 동영상(OTT) 콘텐츠 제작 기술 비교)

  • CHUN, Sanghun;SHIN, Seoung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In addition to the OTT video production service represented by Nexflix and YouTube, a personalized recommendation system for content with artificial intelligence has become common. YouTube's personalized recommendation service system consists of two neural networks, one neural network consisting of a recommendation candidate generation model and the other consisting of a ranking network. Netflix's video recommendation system consists of two data classification systems, divided into content-based filtering and collaborative filtering. As the online platform-led content production is activated by the Corona Pandemic, the field of virtual influencers using artificial intelligence is emerging. Virtual influencers are produced with GAN (Generative Adversarial Networks) artificial intelligence, and are unsupervised learning algorithms in which two opposing systems compete with each other. This study also researched the possibility of developing AI platform based on individual recommendation and virtual influencer (metabus) as a core content of OTT in the future.

Analysis of unfairness of artificial intelligence-based speaker identification technology (인공지능 기반 화자 식별 기술의 불공정성 분석)

  • Shin Na Yeon;Lee Jin Min;No Hyeon;Lee Il Gu
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Digitalization due to COVID-19 has rapidly developed artificial intelligence-based voice recognition technology. However, this technology causes unfair social problems, such as race and gender discrimination if datasets are biased against some groups, and degrades the reliability and security of artificial intelligence services. In this work, we compare and analyze accuracy-based unfairness in biased data environments using VGGNet (Visual Geometry Group Network), ResNet (Residual Neural Network), and MobileNet, which are representative CNN (Convolutional Neural Network) models of artificial intelligence. Experimental results show that ResNet34 showed the highest accuracy for women and men at 91% and 89.9%in Top1-accuracy, while ResNet18 showed the slightest accuracy difference between genders at 1.8%. The difference in accuracy between genders by model causes differences in service quality and unfair results between men and women when using the service.