• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.04 seconds

Technical Trends in Artificial Intelligence for Robotics Based on Large Language Models (거대언어모델 기반 로봇 인공지능 기술 동향 )

  • J. Lee;S. Park;N.W. Kim;E. Kim;S.K. Ko
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.1
    • /
    • pp.95-105
    • /
    • 2024
  • In natural language processing, large language models such as GPT-4 have recently been in the spotlight. The performance of natural language processing has advanced dramatically driven by an increase in the number of model parameters related to the number of acceptable input tokens and model size. Research on multimodal models that can simultaneously process natural language and image data is being actively conducted. Moreover, natural-language and image-based reasoning capabilities of large language models is being explored in robot artificial intelligence technology. We discuss research and related patent trends in robot task planning and code generation for robot control using large language models.

Deep neural network based prediction of burst parameters for Zircaloy-4 fuel cladding during loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2565-2571
    • /
    • 2020
  • Background: Understanding the behaviour of nuclear fuel claddings by conducting burst test on single cladding tube under simulated loss-of-coolant accident conditions and developing theoretical cum empirical predictive computer codes have been the focus of several investigations. The developed burst criterion (a) assumes symmetrical deformation of cladding tube in contrast to experimental observation (b) interpolates the properties of Zircaloy-4 cladding in mixed α+β phase (c) does not account for azimuthal temperature variations. In order to overcome all these drawbacks of burst criterion, it is reasoned that artificial intelligence technique may be a better option to predict the burst parameters. Methods: Artificial neural network models based on feedforward backpropagation algorithm with logsig transfer function are developed. Results: Neural network architecture of 2-4-4-3, that is model with two hidden layers having four nodes in each layer is found to be the most suitable. The mean, maximum, and minimum prediction errors for this optimised model are 0.82%, 19.62%, and 0.004%, respectively. Conclusion: The burst stress, burst temperature, and burst strain obtained from burst criterion have average deviation of 19%, 12%, and 53% respectively whereas the developed neural network model predicted these parameters with average deviation of 6%, 2%, and 8%, respectively.

Feature Analysis for Detecting Mobile Application Review Generated by AI-Based Language Model

  • Lee, Seung-Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.650-664
    • /
    • 2022
  • Mobile applications can be easily downloaded and installed via markets. However, malware and malicious applications containing unwanted advertisements exist in these application markets. Therefore, smartphone users install applications with reference to the application review to avoid such malicious applications. An application review typically comprises contents for evaluation; however, a false review with a specific purpose can be included. Such false reviews are known as fake reviews, and they can be generated using artificial intelligence (AI)-based text-generating models. Recently, AI-based text-generating models have been developed rapidly and demonstrate high-quality generated texts. Herein, we analyze the features of fake reviews generated from Generative Pre-Training-2 (GPT-2), an AI-based text-generating model and create a model to detect those fake reviews. First, we collect a real human-written application review from Kaggle. Subsequently, we identify features of the fake review using natural language processing and statistical analysis. Next, we generate fake review detection models using five types of machine-learning models trained using identified features. In terms of the performances of the fake review detection models, we achieved average F1-scores of 0.738, 0.723, and 0.730 for the fake review, real review, and overall classifications, respectively.

Predicting Oxynitrification layer using AI-based Varying Coefficient Regression model (AI 기반의 Varying Coefficient Regression 모델을 이용한 산질화층 예측)

  • Hye Jung Park;Joo Yong Shim;Kyong Jun An;Chang Ha Hwang;Je Hyun Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.374-381
    • /
    • 2023
  • This study develops and evaluates a deep learning model for predicting oxide and nitride layers based on plasma process data. We introduce a novel deep learning-based Varying Coefficient Regressor (VCR) by adapting the VCR, which previously relied on an existing unique function. This model is employed to forecast the oxide and nitride layers within the plasma. Through comparative experiments, the proposed VCR-based model exhibits superior performance compared to Long Short-Term Memory, Random Forest, and other methods, showcasing its excellence in predicting time series data. This study indicates the potential for advancing prediction models through deep learning in the domain of plasma processing and highlights its application prospects in industrial settings.

Development of Artificial Inetelligence Education Program for the Lower Grades of Elementary School (초등학교 저학년 학습자를 위한 인공지능 교육프로그램 개발)

  • Kang, Ji-eun;Koo, Dukhoi
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.761-768
    • /
    • 2021
  • Recently, various platforms and contents for artificial intelligence education have been developed, but artificial intelligence education programs for the lower grades of elementary school are insufficient. Therefore, the purpose of this study is to develop an artificial intelligence education program for learners in the lower grades of elementary school. It was designed using the Novel Engineering with various convergence education research cases for software education. After the first program was developed, it was verified by expert validity test, and the program was modified and developed accordingly. It was necessary to construct a program based on spoken language rather than written language in consideration of the level of learners in the lower grades in the process of acquiring Hangeul, and to secure the number of educational hours through integration between subjects. It is expected that this study can suggest a new direction for artificial intelligence education for elementary and lower grade learners.

A Study on the Defect Detection of Fabrics using Deep Learning (딥러닝을 이용한 직물의 결함 검출에 관한 연구)

  • Eun Su Nam;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.92-98
    • /
    • 2022
  • Identifying defects in textiles is a key procedure for quality control. This study attempted to create a model that detects defects by analyzing the images of the fabrics. The models used in the study were deep learning-based VGGNet and ResNet, and the defect detection performance of the two models was compared and evaluated. The accuracy of the VGGNet and the ResNet model was 0.859 and 0.893, respectively, which showed the higher accuracy of the ResNet. In addition, the region of attention of the model was derived by using the Grad-CAM algorithm, an eXplainable Artificial Intelligence (XAI) technique, to find out the location of the region that the deep learning model recognized as a defect in the fabric image. As a result, it was confirmed that the region recognized by the deep learning model as a defect in the fabric was actually defective even with the naked eyes. The results of this study are expected to reduce the time and cost incurred in the fabric production process by utilizing deep learning-based artificial intelligence in the defect detection of the textile industry.

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

A Study on Prediction of Business Status Based on Machine Learning

  • Kim, Ki-Pyeong;Song, Seo-Won
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.2
    • /
    • pp.23-27
    • /
    • 2018
  • Korea has a high proportion of self-employment. Many of them start the food business since it does not require high-techs and it is possible to start the business relatively easily compared to many others in business categories. However, the closure rate of the business is also high due to excessive competition and market saturation. Cafés and restaurants are examples of food business where the business analysis is highly important. However, for most of the people who want to start their own business, it is difficult to conduct systematic business analysis such as trade area analysis or to find information for business analysis. Therefore, in this paper, we predicted business status with simple information using Microsoft Azure Machine Learning Studio program. Experimental results showed higher performance than the number of attributes, and it is expected that this artificial intelligence model will be helpful to those who are self-employed because it can easily predict the business status. The results showed that the overall accuracy was over 60 % and the performance was high compared to the number of attributes. If this model is used, those who prepare for self-employment who are not experts in the business analysis will be able to predict the business status of stores in Seoul with simple attributes.

A Study on the Impact of Perceived Value of Art Based on Artificial Intelligence on Consumers' Purchase Intention

  • Wang, Ruomu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.275-281
    • /
    • 2021
  • The purpose of this research is to explore what factors affect consumers' purchasing decisions when purchasing artificial intelligence artworks. The research pointed out that in the real shopping model, customer perceived value includes three dimensions: product perceived value, service perceived value and social perceived value. On this basis, an artificial intelligence work purchase decision-making influence model was constructed, and an online survey was attempted to collect data. Through analysis of the reliability, effectiveness and structural equations of SPSS24.0 and AMOS24.0, and scientific verification and analysis, we found that product cognitive value and service cognitive value have a positive impact on consumers' purchase intentions, but social cognition Value has no positive effect on consumers' purchasing intentions.

Reference-based Utterance Generation Model using Multi-turn Dialogue (멀티턴 대화를 활용한 레퍼런스 기반의 발화 생성 모델)

  • Sangmin Park;Yuri Son;Bitna Keum;Hongjin Kim;Harksoo Kim;Jaieun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.88-91
    • /
    • 2022
  • 디지털 휴먼, 민원 상담, ARS 등 칫챗의 활용과 수요가 증가함에 따라 칫챗의 성능 향상을 위한 다양한 연구가 진행되고 있다. 특히, 오토 인코더(Auto-encoder) 기반의 생성 모델(Generative Model)은 높은 성능을 보이며 지속적인 연구가 이루어지고 있으나, 이전 대화들에 대한 충분한 문맥 정보의 반영이 어렵고 문법적으로 부적절한 답변을 생성하는 문제가 있다. 이를 개선하기 위해 검색 기반의 생성 모델과 관련된 연구가 진행되고 있으나, 현재 시점의 문장이 유사해도 이전 문장들에 따라 의도와 답변이 달라지는 멀티턴 대화 특징을 반영하여 대화를 검색하는 연구가 부족하다. 본 논문에서는 이와 같은 멀티턴 대화의 특징이 고려된 검색 방법을 제안하고 검색된 레퍼런스(준정답 문장)를 멀티턴 대화와 함께 생성 모델의 입력으로 활용하여 학습시키는 방안을 제안한다. 제안 방안으로 학습된 발화 생성 모델은 기존 모델과 비교 평가를 수행하며 Rouge-1 스코어에서 13.11점, Rouge-2 스코어에서 10.09점 Rouge-L 스코어에서 13.2점 향상된 성능을 보였고 이를 통해 제안 방안의 우수성을 입증하였다.

  • PDF