• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.037 seconds

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.

An Adversarial Attack Type Classification Method Using Linear Discriminant Analysis and k-means Algorithm (선형 판별 분석 및 k-means 알고리즘을 이용한 적대적 공격 유형 분류 방안)

  • Choi, Seok-Hwan;Kim, Hyeong-Geon;Choi, Yoon-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1215-1225
    • /
    • 2021
  • Although Artificial Intelligence (AI) techniques have shown impressive performance in various fields, they are vulnerable to adversarial examples which induce misclassification by adding human-imperceptible perturbations to the input. Previous studies to defend the adversarial examples can be classified into three categories: (1) model retraining methods; (2) input transformation methods; and (3) adversarial examples detection methods. However, even though the defense methods against adversarial examples have constantly been proposed, there is no research to classify the type of adversarial attack. In this paper, we proposed an adversarial attack family classification method based on dimensionality reduction and clustering. Specifically, after extracting adversarial perturbation from adversarial example, we performed Linear Discriminant Analysis (LDA) to reduce the dimensionality of adversarial perturbation and performed K-means algorithm to classify the type of adversarial attack family. From the experimental results using MNIST dataset and CIFAR-10 dataset, we show that the proposed method can efficiently classify five tyeps of adversarial attack(FGSM, BIM, PGD, DeepFool, C&W). We also show that the proposed method provides good classification performance even in a situation where the legitimate input to the adversarial example is unknown.

Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment (6, 10, 17 GHz 반지하 실내 복도 환경의 전파 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • This study measured and analyzed the propagation characteristics at frequencies 6, 10, and 17 GHz to discover the new propagation demands in a semi-basement indoor corridor environment for meeting the 4th industrial revolution requirements. The measured indoor environment is a straight corridor consisting of three lecture rooms and glass windows on the outside. The measurement scenario development and measurement system were constructed to match this environment. The transmitting antenna was fixed, and the frequency domain and time domain propagation characteristics were measured and analyzed in the line-of-sight environment based on the distance of the receiving antenna location. In the frequency domain, reliability was determined by the parameters of the floating intercept (FI) path loss model and an R-squared value of 0.5 or more. In the time domain, the root mean square (RMS) delay spread and the cumulative probability of K-factor were used to determine that 6 GHz had high propagation power and 17 GHz had low propagation power. These research results will be effective in providing ultra-connection and ultra-delay artificial intelligence services for WIFI 6, 5G, and future systems in a semi-basement indoor corridor environment.

Factors Influencing Users' Payment Decisions Regarding Knowledge Products on the Short-Form Video Platform: A Case of Knowledge-Sharing on TikTok (짧은 영상 플랫폼에서 지식상품에 대한 사용자의 구매결정에 영향을 미치는 요인: TikTok의 지식 공유 사례)

  • Huimin Shi;Joon Koh;Sangcheol Park
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.31-49
    • /
    • 2023
  • TikTok, as a leading short video platform, has attracted many users, and the resulting attention generates immense business value as a platform to diffuse knowledge. As a qualitative and explorative approach, this study reviews the knowledge payment industry and discusses the influential factors of users' payment decisions regarding knowledge products on TikTok. By conducting in-depth interviews with ten participants and observing 95 knowledge providers' videos, we find that TikTok has significant business potential in the knowledge payment industry. By using the ATLAS. ti software to code the data collected from these interviews, this study finds that demander characteristics (personal needs), product characteristics (product quality), provider characteristics (the key opinion leader effect), and platform characteristics (platform management) are the four core categories that influence users' payment decisions regarding knowledge products on TikTok. A theoretical model consisting of the ten variables of emotional needs, professional needs, quality, price, helpfulness, value, charisma, user trust, service guarantee, and scarcity is proposed based on the grounded theory. The theoretical and practical implications of the study findings are also discussed.

A Study on Analysis of Problems in Data Collection for Smart Farm Construction (스마트팜 구축을 위한 데이터수집의 문제점 분석 연구)

  • Kim Song Gang;Nam Ki Po
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.69-80
    • /
    • 2022
  • Now that climate change and food resource security are becoming issues around the world, smart farms are emerging as an alternative to solve them. In addition, changes in the production environment in the primary industry are a major concern for people engaged in all primary industries (agriculture, livestock, fishery), and the resulting food shortage problem is an important problem that we all need to solve. In order to solve this problem, in the primary industry, efforts are made to solve the food shortage problem through productivity improvement by introducing smart farms using the 4th industrial revolution such as ICT and BT and IoT big data and artificial intelligence technologies. This is done through the public and private sectors.This paper intends to consider the minimum requirements for the smart farm data collection system for the development and utilization of smart farms, the establishment of a sustainable agricultural management system, the sequential system construction method, and the purposeful, efficient and usable data collection system. In particular, we analyze and improve the problems of the data collection system for building a Korean smart farm standard model, which is facing limitations, based on in-depth investigations in the field of livestock and livestock (pig farming) and analysis of various cases, to establish an efficient and usable big data collection system. The goal is to propose a method for collecting big data.

New Hybrid Approach of CNN and RNN based on Encoder and Decoder (인코더와 디코더에 기반한 합성곱 신경망과 순환 신경망의 새로운 하이브리드 접근법)

  • Jongwoo Woo;Gunwoo Kim;Keunho Choi
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.129-143
    • /
    • 2023
  • In the era of big data, the field of artificial intelligence is showing remarkable growth, and in particular, the image classification learning methods by deep learning are becoming an important area. Various studies have been actively conducted to further improve the performance of CNNs, which have been widely used in image classification, among which a representative method is the Convolutional Recurrent Neural Network (CRNN) algorithm. The CRNN algorithm consists of a combination of CNN for image classification and RNNs for recognizing time series elements. However, since the inputs used in the RNN area of CRNN are the flatten values extracted by applying the convolution and pooling technique to the image, pixel values in the same phase in the image appear in different order. And this makes it difficult to properly learn the sequence of arrangements in the image intended by the RNN. Therefore, this study aims to improve image classification performance by proposing a novel hybrid method of CNN and RNN applying the concepts of encoder and decoder. In this study, the effectiveness of the new hybrid method was verified through various experiments. This study has academic implications in that it broadens the applicability of encoder and decoder concepts, and the proposed method has advantages in terms of model learning time and infrastructure construction costs as it does not significantly increase complexity compared to conventional hybrid methods. In addition, this study has practical implications in that it presents the possibility of improving the quality of services provided in various fields that require accurate image classification.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network (멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용)

  • Tae Jun Ha;Hee Sang Kim;Seong Uk Kang;DooHee Lee;Woo Jin Kim;Ki Won Moon;Hyun-Soo Choi;Jeong Hyun Kim;Yoon Kim;So Hyeon Bak;Sang Won Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.187-201
    • /
    • 2024
  • Osteoporosis is a major health issue globally, often remaining undetected until a fracture occurs. To facilitate early detection, deep learning (DL) models were developed to classify osteoporosis using abdominal computed tomography (CT) scans. This study was conducted using retrospectively collected data from 3,012 contrast-enhanced abdominal CT scans. The DL models developed in this study were constructed for using image data, demographic/clinical information, and multi-modality data, respectively. Patients were categorized into the normal, osteopenia, and osteoporosis groups based on their T-scores, obtained from dual-energy X-ray absorptiometry, into normal, osteopenia, and osteoporosis groups. The models showed high accuracy and effectiveness, with the combined data model performing the best, achieving an area under the receiver operating characteristic curve of 0.94 and an accuracy of 0.80. The image-based model also performed well, while the demographic data model had lower accuracy and effectiveness. In addition, the DL model was interpreted by gradient-weighted class activation mapping (Grad-CAM) to highlight clinically relevant features in the images, revealing the femoral neck as a common site for fractures. The study shows that DL can accurately identify osteoporosis stages from clinical data, indicating the potential of abdominal CT scans in early osteoporosis detection and reducing fracture risks with prompt treatment.

Game Theoretic Optimization of Investment Portfolio Considering the Performance of Information Security Countermeasure (정보보호 대책의 성능을 고려한 투자 포트폴리오의 게임 이론적 최적화)

  • Lee, Sang-Hoon;Kim, Tae-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.37-50
    • /
    • 2020
  • Information security has become an important issue in the world. Various information and communication technologies, such as the Internet of Things, big data, cloud, and artificial intelligence, are developing, and the need for information security is increasing. Although the necessity of information security is expanding according to the development of information and communication technology, interest in information security investment is insufficient. In general, measuring the effect of information security investment is difficult, so appropriate investment is not being practice, and organizations are decreasing their information security investment. In addition, since the types and specification of information security measures are diverse, it is difficult to compare and evaluate the information security countermeasures objectively, and there is a lack of decision-making methods about information security investment. To develop the organization, policies and decisions related to information security are essential, and measuring the effect of information security investment is necessary. Therefore, this study proposes a method of constructing an investment portfolio for information security measures using game theory and derives an optimal defence probability. Using the two-person game model, the information security manager and the attacker are assumed to be the game players, and the information security countermeasures and information security threats are assumed as the strategy of the players, respectively. A zero-sum game that the sum of the players' payoffs is zero is assumed, and we derive a solution of a mixed strategy game in which a strategy is selected according to probability distribution among strategies. In the real world, there are various types of information security threats exist, so multiple information security measures should be considered to maintain the appropriate information security level of information systems. We assume that the defence ratio of the information security countermeasures is known, and we derive the optimal solution of the mixed strategy game using linear programming. The contributions of this study are as follows. First, we conduct analysis using real performance data of information security measures. Information security managers of organizations can use the methodology suggested in this study to make practical decisions when establishing investment portfolio for information security countermeasures. Second, the investment weight of information security countermeasures is derived. Since we derive the weight of each information security measure, not just whether or not information security measures have been invested, it is easy to construct an information security investment portfolio in a situation where investment decisions need to be made in consideration of a number of information security countermeasures. Finally, it is possible to find the optimal defence probability after constructing an investment portfolio of information security countermeasures. The information security managers of organizations can measure the specific investment effect by drawing out information security countermeasures that fit the organization's information security investment budget. Also, numerical examples are presented and computational results are analyzed. Based on the performance of various information security countermeasures: Firewall, IPS, and Antivirus, data related to information security measures are collected to construct a portfolio of information security countermeasures. The defence ratio of the information security countermeasures is created using a uniform distribution, and a coverage of performance is derived based on the report of each information security countermeasure. According to numerical examples that considered Firewall, IPS, and Antivirus as information security countermeasures, the investment weights of Firewall, IPS, and Antivirus are optimized to 60.74%, 39.26%, and 0%, respectively. The result shows that the defence probability of the organization is maximized to 83.87%. When the methodology and examples of this study are used in practice, information security managers can consider various types of information security measures, and the appropriate investment level of each measure can be reflected in the organization's budget.