• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.03 seconds

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • Women's Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

Exploratory Analysis of AI-based Policy Decision-making Implementation

  • SunYoung SHIN
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.203-214
    • /
    • 2024
  • This study seeks to provide implications for domestic-related policies through exploratory analysis research to support AI-based policy decision-making. The following should be considered when establishing an AI-based decision-making model in Korea. First, we need to understand the impact that the use of AI will have on policy and the service sector. The positive and negative impacts of AI use need to be better understood, guided by a public value perspective, and take into account the existence of different levels of governance and interests across public policy and service sectors. Second, reliability is essential for implementing innovative AI systems. In most organizations today, comprehensive AI model frameworks to enable and operationalize trust, accountability, and transparency are often insufficient or absent, with limited access to effective guidance, key practices, or government regulations. Third, the AI system is accountable. The OECD AI Principles set out five value-based principles for responsible management of trustworthy AI: inclusive growth, sustainable development and wellbeing, human-centered values and fairness values and fairness, transparency and explainability, robustness, security and safety, and accountability. Based on this, we need to build an AI-based decision-making system in Korea, and efforts should be made to build a system that can support policies by reflecting this. The limiting factor of this study is that it is an exploratory study of existing research data, and we would like to suggest future research plans by collecting opinions from experts in related fields. The expected effect of this study is analytical research on artificial intelligence-based decision-making systems, which will contribute to policy establishment and research in related fields.

Research trends in hypertext information retrieval (하이퍼텍스트 정보검색에 관한 연구동향)

  • 이영자
    • Journal of Korean Library and Information Science Society
    • /
    • v.21
    • /
    • pp.57-86
    • /
    • 1994
  • The purpose of the study is to understand the research trends in the hypertext information retrieval. Around 30 related papers were investigated, from which three distinctive streams of research trends are grasped: 1) a trend of incorporating the traditional retrieval models, especially the query-based searching model into the hypermedia system. 2) a trend of a n.0, pplying the hypermedia system as an interface to the OPAC system, 3) a trend of incorporating the artificial intelligence techniques into the hypermedia techniques. The research on the hypermedia is going on, and the research directions will be increasingly intend to incorporate the traditional retrieval models and artificial intelligence techniques into the hypermedia system.

  • PDF

Seamless Transition Strategy for Wide Speed-Range Sensorless IPMSM Drives with a Virtual Q-axis Inductance

  • Shen, Hanlin;Xu, Jinbang;Yu, Baiqiang;Tang, Qipeng;Chen, Bao;Lou, Chun;Qiao, Yu
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1224-1234
    • /
    • 2019
  • Hybrid rotor position estimation methods that integrate a fundamental model and high frequency (HF) signal injection are widely used for the wide speed-range sensorless control of interior permanent-magnet synchronous machines (IPMSMs). However, the direct transition of two different schemes may lead to system fluctuations or system instability since two estimated rotor positions based on two different schemes are always unequal due to the effects of parameter variations, system delays and inverter nonlinearities. In order to avoid these problems, a seamless transition strategy to define and construct a virtual q-axis inductance is proposed in this paper. With the proposed seamless transition strategy, an estimated rotor position based on a fundamental model is forced to track that based on HF signal injection before the transition by adjusting the constructed virtual q-axis inductance. Meanwhile, considering that the virtual q-axis inductance changes with rotor position estimation errors, a new observer with a two-phase phase-locked loop (TP-PLL) is developed to accurately obtain the virtual q-axis inductance online. Furthermore, IPMSM sensorless control with maximum torque per ampere (MTPA) operations can be tracked automatically by selecting the proper virtual q-axis inductance. Finally, experimental results obtained from an IPMSM demonstrate the feasibility of the proposed seamless transition strategy.

Neural Network-based Modeling of Industrial Safety System in Korea (신경회로망 기반 우리나라 산업안전시스템의 모델링)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • It is extremely important to design safety-guaranteed industrial processes because such process determine the ultimate outcomes of industrial activities, including worker safety. Application of artificial intelligence (AI) in industrial safety involves modeling industrial safety systems by using vast amounts of safety-related data, accident prediction, and accident prevention based on predictions. As a preliminary step toward realizing AI-based industrial safety in Korea, this study discusses neural network-based modeling of industrial safety systems. The input variables that are the most discriminatory relative to the output variables of industrial safety processes are selected using two information-theoretic measures, namely entropy and cross entropy. Normalized frequency and severity of industrial accidents are selected as the output variables. Our simulation results confirm the effectiveness of the proposed neural network model and, therefore, the feasibility of extending the model to include more input and output variables.

A Methodology for Bankruptcy Prediction in Imbalanced Datasets using eXplainable AI (데이터 불균형을 고려한 설명 가능한 인공지능 기반 기업부도예측 방법론 연구)

  • Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.65-76
    • /
    • 2022
  • Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.

A Study on Fruit Quality Identification Using YOLO V2 Algorithm

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.190-195
    • /
    • 2021
  • Currently, one of the fields leading the 4th industrial revolution is the image recognition field of artificial intelligence, which is showing good results in many fields. In this paper, using is a YOLO V2 model, which is one of the image recognition models, we intend to classify and select into three types according to the characteristics of fruits. To this end, it was designed to proceed the number of iterations of learning 9000 counts based on 640 mandarin image data of 3 classes. For model evaluation, normal, rotten, and unripe mandarin oranges were used based on images. We as a result of the experiment, the accuracy of the learning model was different depending on the number of learning. Normal mandarin oranges showed the highest at 60.5% in 9000 repetition learning, and unripe mandarin oranges also showed the highest at 61.8% in 9000 repetition learning. Lastly, rotten tangerines showed the highest accuracy at 86.0% in 7000 iterations. It will be very helpful if the results of this study are used for fruit farms in rural areas where labor is scarce.

Cyber Threats Prediction model based on Artificial Neural Networks using Quantification of Open Source Intelligence (OSINT) (공개출처정보의 정량화를 이용한 인공신경망 기반 사이버위협 예측 모델)

  • Lee, Jongkwan;Moon, Minam;Shin, Kyuyong;Kang, Sungrok
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.115-123
    • /
    • 2020
  • Cyber Attack have evolved more and more in recent years. One of the best countermeasure to counter this advanced and sophisticated cyber threat is to predict cyber attacks in advance. It requires a lot of information and effort to predict cyber threats. If we use Open Source Intelligence(OSINT), the core of recent information acquisition, we can predict cyber threats more accurately. In order to predict cyber threats using OSINT, it is necessary to establish a Database(DB) for cyber attacks from OSINT and to select factors that can evaluate cyber threats from the established DB. We are based on previous researches that built a cyber attack DB using data mining and analyzed the importance of core factors among accumulated DG factors by AHP technique. In this research, we present a method for quantifying cyber threats and propose a cyber threats prediction model based on artificial neural networks.

Detecting Common Weakness Enumeration(CWE) Based on the Transfer Learning of CodeBERT Model (CodeBERT 모델의 전이 학습 기반 코드 공통 취약점 탐색)

  • Chansol Park;So Young Moon;R. Young Chul Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.431-436
    • /
    • 2023
  • Recently the incorporation of artificial intelligence approaches in the field of software engineering has been one of the big topics. In the world, there are actively studying in two directions: 1) software engineering for artificial intelligence and 2) artificial intelligence for software engineering. We attempt to apply artificial intelligence to software engineering to identify and refactor bad code module areas. To learn the patterns of bad code elements well, we must have many datasets with bad code elements labeled correctly for artificial intelligence in this task. The current problems have insufficient datasets for learning and can not guarantee the accuracy of the datasets that we collected. To solve this problem, when collecting code data, bad code data is collected only for code module areas with high-complexity, not the entire code. We propose a method for exploring common weakness enumeration by learning the collected dataset based on transfer learning of the CodeBERT model. The CodeBERT model learns the corresponding dataset more about common weakness patterns in code. With this approach, we expect to identify common weakness patterns more accurately better than one in traditional software engineering.

A Study on the Use of Artificial Intelligence Speakers for the People with Physical disability using Technology Acceptance Model (기술수용모델을 활용한 지체장애인의 인공지능 스피커 사용 의도에 관한 연구)

  • Park, Hye-Hyun;Lee, Sun-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.283-289
    • /
    • 2021
  • Many people with disabilities have shown interest in artificial intelligence speakers that serves as the main hub of the smart home. Therefore, the purpose of this study was to identify the intention of people with disabilities to use such speakers. The focus is on those with physical disabilities, a segment that accounts for the largest number of disability types. Based on the theoretical model of technology acceptance, the effect of perceived ease of use and perceived usefulness of artificial intelligence speakers by people with disabilities was analyzed using Structural Equation Modeling (SEM). Research has confirmed that the technology acceptance model is suitable for identifying the intention to use artificial intelligence speakers by people with disabilities, and specifically that the perceived ease of use has a significant impact on usefulness. Furthermore, the perceived ease of use for people with disabilities did not have a statistically significant effect on their intent to use whereas the perceived usefulness was shown to have a significant effect on the same. This study is meaningful as a foundation for developing customized artificial intelligence speaker services and improving the use of artificial intelligence speakers by people with disabilities.