• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.032 seconds

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

A Study on the Methodology of Early Diagnosis of Dementia Based on AI (Artificial Intelligence) (인공지능(AI) 기반 치매 조기진단 방법론에 관한 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.37-49
    • /
    • 2021
  • The number of dementia patients in Korea is estimated to be over 800,000, and the severity of dementia is becoming a social problem. However, no treatment or drug has yet been developed to cure dementia worldwide. The number of dementia patients is expected to increase further due to the rapid aging of the population. Currently, early detection of dementia and delaying the course of dementia symptoms is the best alternative. This study presented a methodology for early diagnosis of dementia by measuring and analyzing amyloid plaques. This vital protein can most clearly and early diagnose dementia in the retina through AI-based image analysis. We performed binary classification and multi-classification learning based on CNN on retina data. We also developed a deep learning algorithm that can diagnose dementia early based on pre-processed retinal data. Accuracy and recall of the deep learning model were verified, and as a result of the verification, and derived results that satisfy both recall and accuracy. In the future, we plan to continue the study based on clinical data of actual dementia patients, and the results of this study are expected to solve the dementia problem.

A Servicism Model of the New Economy System (서비스주의 경제시스템의 구조와 운용 연구)

  • Hyunsoo Kim
    • Journal of Service Research and Studies
    • /
    • v.11 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • This study was conducted to derive a model of a sustainable economic system for humanity in the era of service economy that requires a paradigm shift. A new long-term sustainable development model has been built on the basis of thousands of years of economic operation experience. Currently, the world is operating the capitalism as the main economic system because there is no better alternative, and the changing economic and social environment such as the advent of the 4th Industrial Revolution is exacerbating the problems of the capitalism, such as job shortages and inequality. In this study, we analyzed the economic management system experienced by human society, and derived an economic system model that is ideal for the modern and future society and is sustainable in the long term. The conditions for a long-term sustainable economic system were presented first. It must be a model that can solve the problems of the current economic system. It must be a model that is faithful to the characteristics of the modern economic society and the nature of the economy itself. And since the new economic system is for humanity, it must be based on the common principles of human society. It should be a model that continuously guarantees core values such as equality and freedom required by human society. After analyzing the problems of the current economic system and analyzing the conditions required for the new system, the basic axioms that the new economic system should be based on were presented, and a desirable model was derived based on this. The structure of the derived model and the specific operation model were presented. In the future, research is needed to specify the operational model so that this model can be settled well in different environments for each country.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

A Study on Model for Drivable Area Segmentation based on Deep Learning (딥러닝 기반의 주행가능 영역 추출 모델에 관한 연구)

  • Jeon, Hyo-jin;Cho, Soo-sun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.105-111
    • /
    • 2019
  • Core technologies that lead the Fourth Industrial Revolution era, such as artificial intelligence, big data, and autonomous driving, are implemented and serviced through the rapid development of computing power and hyper-connected networks based on the Internet of Things. In this paper, we implement two different models for drivable area segmentation in various environment, and propose a better model by comparing the results. The models for drivable area segmentation are using DeepLab V3+ and Mask R-CNN, which have great performances in the field of image segmentation and are used in many studies in autonomous driving technology. For driving information in various environment, we use BDD dataset which provides driving videos and images in various weather conditions and day&night time. The result of two different models shows that Mask R-CNN has higher performance with 68.33% IoU than DeepLab V3+ with 48.97% IoU. In addition, the result of visual inspection of drivable area segmentation on driving image, the accuracy of Mask R-CNN is 83% and DeepLab V3+ is 69%. It indicates Mask R-CNN is more efficient than DeepLab V3+ in drivable area segmentation.

A Study on Building Object Change Detection using Spatial Information - Building DB based on Road Name Address - (기구축 공간정보를 활용한 건물객체 변화 탐지 연구 - 도로명주소건물DB 중심으로 -)

  • Lee, Insu;Yeon, Sunghyun;Jeong, Hohyun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.105-118
    • /
    • 2022
  • The demand for information related to 3D spatial objects model in metaverse, smart cities, digital twins, autonomous vehicles, urban air mobility will be increased. 3D model construction for spatial objects is possible with various equipments such as satellite-, aerial-, ground platforms and technologies such as modeling, artificial intelligence, image matching. However, it is not easy to quickly detect and convert spatial objects that need updating. In this study, based on spatial information (features) and attributes, using matching elements such as address code, number of floors, building name, and area, the converged building DB and the detected building DB are constructed. Both to support above and to verify the suitability of object selection that needs to be updated, one system prototype was developed. When constructing the converged building DB, the convergence of spatial information and attributes was impossible or failed in some buildings, and the matching rate was low at about 80%. It is believed that this is due to omitting of attributes about many building objects, especially in the pilot test area. This system prototype will support the establishment of an efficient drone shooting plan for the rapid update of 3D spatial objects, thereby preventing duplication and unnecessary construction of spatial objects, thereby greatly contributing to object improvement and cost reduction.

Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction (해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구)

  • Dae-yaoung Eeom;Bang-hee Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.100-103
    • /
    • 2023
  • Recently, development of maritime autonomoust surface ships and eco-friendly ships, production and evaluation research considering various marine environments is needed in the field of optimal routes as the demand for accurate and detailed real-time marine environment prediction information expands. An algorithm that can calculate the optimal route while reducing the risk of the marine environment and uncertainty in energy consumption in smart ships was developed in 2 stages. In the first stage, a profile was created by combining marine environmental information with ship location and status information within the Automatic Ship Identification System(AIS). In the second stage, a model was developed that could define the marine environment energy map using the configured profile results, A regression equation was generated by applying Random Forest among machine learning techniques to reflect about 600,000 data. The Random Forest coefficient of determination (R2) was 0.89, showing very high reliability. The Dijikstra shortest path algorithm was applied to the marine environment prediction at June 1 to 3, 2021, and to calculate the optimal safety route and express it on the map. The route calculated by the random forest regression model was streamlined, and the route was derived considering the state of the marine environment prediction information. The concept of route calculation based on real-time marine environment prediction information in this study is expected to be able to calculate a realistic and safe route that reflects the movement tendency of ships, and to be expanded to a range of economic, safety, and eco-friendliness evaluation models in the future.

  • PDF

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

A study on the factors of elementary school teachers' intentions to use AI math learning system: Focusing on the case of TocToc-Math (초등교사들의 인공지능 활용 수학수업 지원시스템 사용 의도에 영향을 미치는 요인 연구: <똑똑! 수학탐험대> 사례를 중심으로)

  • Kyeong-Hwa Lee;Sheunghyun Ye;Byungjoo Tak;Jong Hyeon Choi;Taekwon Son;Jihyun Ock
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.335-350
    • /
    • 2024
  • This study explored the factors that influence elementary school teachers' intention to use an artificial intelligence (AI) math learning system and analyzed the interactions and relationships among these factors. Based on the technology acceptance model, perceived usefulness for math learning, perceived ease of use of AI, and attitude toward using AI were analyzed as the main variables. Data collected from a survey of 215 elementary school teachers was used to analyze the relationships between the variables using structural equation modeling. The results of the study showed that perceived usefulness for math learning and perceived ease of use of AI significantly influenced teachers' positive attitudes toward AI math learning systems, and positive attitudes significantly influenced their intention to use AI. These results suggest that it is important to positively change teachers' perceptions of the effectiveness of using AI technology in mathematics instruction and their attitudes toward AI technology in order to effectively adopt and utilize AI-based mathematics education tools in the future.