• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.029 seconds

Sparse Class Processing Strategy in Image-based Livestock Defect Detection (이미지 기반 축산물 불량 탐지에서의 희소 클래스 처리 전략)

  • Lee, Bumho;Cho, Yesung;Yi, Mun Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1720-1728
    • /
    • 2022
  • The industrial 4.0 era has been opened with the development of artificial intelligence technology, and the realization of smart farms incorporating ICT technology is receiving great attention in the livestock industry. Among them, the quality management technology of livestock products and livestock operations incorporating computer vision-based artificial intelligence technology represent key technologies. However, the insufficient number of livestock image data for artificial intelligence model training and the severely unbalanced ratio of labels for recognizing a specific defective state are major obstacles to the related research and technology development. To overcome these problems, in this study, combining oversampling and adversarial case generation techniques is proposed as a method necessary to effectively utilizing small data labels for successful defect detection. In addition, experiments comparing performance and time cost of the applicable techniques were conducted. Through experiments, we confirm the validity of the proposed methods and draw utilization strategies from the study results.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method

  • Kim, Hyeong-Joo;Dinoy, Peter Rey T.;Choi, Hee-Seong;Lee, Kyoung-Bum;Mission, Jose Leo C.
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.523-535
    • /
    • 2019
  • Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been applied in various fields over the years and its applications are expected to grow in number with the passage of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and foundation engineering models especially since the success of each project relies on numerous amounts of data. In this study, two applications of AI in the field of geotechnical and foundation engineering are presented - spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of clay. SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with high efficiency by using lesser computation resources. The results of the study showed that ANN can be a valuable, powerful, and practical tool in providing various information that is needed in geotechnical and foundation design.

Predicting Soccer Players' Wage Grades Using Big Data and Artificial Intelligence (빅데이터 및 인공지능을 활용한 축구선수 연봉등급 예측)

  • Hyeon-Seong Jeong;Jin-hwa Kim;Dae-Won Hyun
    • Journal of Industrial Convergence
    • /
    • v.22 no.8
    • /
    • pp.19-28
    • /
    • 2024
  • This study proposes a new method for predicting the wage grades of soccer players using big data and artificial intelligence. Predicting the salaries of soccer players is a crucial task that involves accurately assessing players' performance and potential, and reflecting this in their salaries to enhance the economic efficiency of the soccer industry. This research analyzes player ability data provided by FIFA 22 and employs various big data and artificial intelligence techniques to predict players' salary grades. Key methodologies used include decision trees, artificial neural networks, random forests, and boosting, which were utilized to compare the accuracy of the salary prediction models. The results show that the random forest and boosting methods exhibited the highest prediction accuracy. This study demonstrates the process and utility of using big data and artificial intelligence technologies to predict soccer players' salary grades, offering a new perspective on the soccer industry.

Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution

  • Ruiz, Christian C.;Caballero, Jose L.;Martinez, Juan H.;Aperador, Willian A.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.257-265
    • /
    • 2020
  • Many failures of concrete structures are related to steel corrosion. For this reason, it is important to recognize how the carbonation can affect the durability of reinforced concrete structures. The repeatability of the carbonation depth measure in a specimen of concrete sprayed with a phenolphthalein solution is consistently low whereby it is necessary to have an impartial method to measure the carbonation depth. This study presents two automatic algorithms to detect the non-carbonated zone in concrete specimens. The first algorithm is based solely on digital processing image (DPI), mainly morphological and threshold techniques. The second algorithm is based on artificial intelligence, more specifically on an array of Kohonen networks, but also using some DPI techniques to refine the results. Moreover, another algorithm was developed with the purpose of measure the carbonation depth from the image obtained previously.

Preliminary Studies on Embedding Qualitative Reasoning into Qualitative Analysis and Laboratory Simulation

  • Pang, Jen-Sen;Syed Mustapha, S.M.F.D;Mohd.Zain, Sharifuddin
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.230-236
    • /
    • 2001
  • In this paper, we explored the possibilities of embedding Qualitative Reasoning techniques, the Qualitative Process Theory (QPT), and its implementation in the field of inorganic chemistry. The target field of implementation is Qualitative Chemical Analysis and Laboratory Simulation. By embedding such technique in this education software we aim to combine theory and practice into a single package. The system, are able to generate reasoning and explanation based on chemical theories, helping student in mastering basic chemistry knowledge and practical skill as well. We also review the suitability of embedding QPT techniques into chemistry in general, by comparing some examples from both fields.

  • PDF

Improved Fuzzy-associated Memory Techniques for Image Recovery

  • Zheng Zhao;Kwang Baek Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.242-248
    • /
    • 2024
  • This paper introduces an improved fuzzy association memory (IFAM), an advanced FAM method based on the T-conorm probability operator. Specifically, the T-conorm probability operator fuzzifies the input data and performs fuzzy logic operations, effectively handling ambiguity and uncertainty during image restoration, which enhances the accuracy and effectiveness of the restoration results. Experimental results validate the performance of IFAM by comparing it with existing fuzzy association memory techniques. The root mean square error shows that the restoration rate of IFAM reached 80%, compared to only 40% for the traditional fuzzy association memory technique.

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models (회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석)

  • Min-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.299-304
    • /
    • 2023
  • Among artificial intelligence techniques, deep learning is a model that has been used in many places and has proven its effectiveness. However, deep learning models are not used effectively in everywhere. In this paper, we will show the limitations of deep learning models through comparison of regression analysis and deep learning models, and present a guide for effective use of deep learning models. In addition, among various techniques used for optimization of deep learning models, data normalization and data shuffling techniques, which are widely used, are compared and evaluated based on actual data to provide guidelines for increasing the accuracy and value of deep learning models.

Artificial neural network for predicting nuclear power plant dynamic behaviors

  • El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3275-3285
    • /
    • 2021
  • A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.