• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.026 seconds

TAGS: Text Augmentation with Generation and Selection (생성-선정을 통한 텍스트 증강 프레임워크)

  • Kim Kyung Min;Dong Hwan Kim;Seongung Jo;Heung-Seon Oh;Myeong-Ha Hwang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.455-460
    • /
    • 2023
  • Text augmentation is a methodology that creates new augmented texts by transforming or generating original texts for the purpose of improving the performance of NLP models. However existing text augmentation techniques have limitations such as lack of expressive diversity semantic distortion and limited number of augmented texts. Recently text augmentation using large language models and few-shot learning can overcome these limitations but there is also a risk of noise generation due to incorrect generation. In this paper, we propose a text augmentation method called TAGS that generates multiple candidate texts and selects the appropriate text as the augmented text. TAGS generates various expressions using few-shot learning while effectively selecting suitable data even with a small amount of original text by using contrastive learning and similarity comparison. We applied this method to task-oriented chatbot data and achieved more than sixty times quantitative improvement. We also analyzed the generated texts to confirm that they produced semantically and expressively diverse texts compared to the original texts. Moreover, we trained and evaluated a classification model using the augmented texts and showed that it improved the performance by more than 0.1915, confirming that it helps to improve the actual model performance.

Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data (머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로)

  • Yoon, Yanghyun;Kim, Taekyung;Kim, Suyeong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.229-249
    • /
    • 2022
  • This paper investigates machine learning models for predicting the designation of administrative issues in the KOSDAQ market through various techniques. When a company in the Korean stock market is designated as administrative issue, the market recognizes the event itself as negative information, causing losses to the company and investors. The purpose of this study is to evaluate alternative methods for developing a artificial intelligence service to examine a possibility to the designation of administrative issues early through the financial ratio of companies and to help investors manage portfolio risks. In this study, the independent variables used 21 financial ratios representing profitability, stability, activity, and growth. From 2011 to 2020, when K-IFRS was applied, financial data of companies in administrative issues and non-administrative issues stocks are sampled. Logistic regression analysis, decision tree, support vector machine, random forest, and LightGBM are used to predict the designation of administrative issues. According to the results of analysis, LightGBM with 82.73% classification accuracy is the best prediction model, and the prediction model with the lowest classification accuracy is a decision tree with 71.94% accuracy. As a result of checking the top three variables of the importance of variables in the decision tree-based learning model, the financial variables common in each model are ROE(Net profit) and Capital stock turnover ratio, which are relatively important variables in designating administrative issues. In general, it is confirmed that the learning model using the ensemble had higher predictive performance than the single learning model.

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.

Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms (변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측)

  • Sanghyun Bae;Byounggu Choi
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • Recently, many studies have been conducted to increase the accuracy of stock price prediction by analyzing candlestick charts using artificial intelligence techniques. However, these studies failed to consider the time-series characteristics of candlestick charts and to take into account the emotional state of market participants in data learning for stock price prediction. In order to overcome these limitations, this study produced input data by combining volatility index and candlestick charts to consider the emotional state of market participants, and used the data as input for a new method proposed on the basis of combining variantion autoencoder (VAE) and attention mechanisms for considering the time-series characteristics of candlestick chart. Fifty firms were randomly selected from the S&P 500 index and their stock prices were predicted to evaluate the performance of the method compared with existing ones such as convolutional neural network (CNN) or long-short term memory (LSTM). The results indicated the method proposed in this study showed superior performance compared to the existing ones. This study implied that the accuracy of stock price prediction could be improved by considering the emotional state of market participants and the time-series characteristics of the candlestick chart.

A Design of Authentication Mechanism for Secure Communication in Smart Factory Environments (스마트 팩토리 환경에서 안전한 통신을 위한 인증 메커니즘 설계)

  • Joong-oh Park
    • Journal of Industrial Convergence
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • Smart factories represent production facilities where cutting-edge information and communication technologies are fused with manufacturing processes, reflecting rapid advancements and changes in the global manufacturing sector. They capitalize on the integration of robotics and automation, the Internet of Things (IoT), and the convergence of artificial intelligence technologies to maximize production efficiency in various manufacturing environments. However, the smart factory environment is prone to security threats and vulnerabilities due to various attack techniques. When security threats occur in smart factories, they can lead to financial losses, damage to corporate reputation, and even human casualties, necessitating an appropriate security response. Therefore, this paper proposes a security authentication mechanism for safe communication in the smart factory environment. The components of the proposed authentication mechanism include smart devices, an internal operation management system, an authentication system, and a cloud storage server. The smart device registration process, authentication procedure, and the detailed design of anomaly detection and update procedures were meticulously developed. And the safety of the proposed authentication mechanism was analyzed, and through performance analysis with existing authentication mechanisms, we confirmed an efficiency improvement of approximately 8%. Additionally, this paper presents directions for future research on lightweight protocols and security strategies for the application of the proposed technology, aiming to enhance security.

Safety Verification Techniques of Privacy Policy Using GPT (GPT를 활용한 개인정보 처리방침 안전성 검증 기법)

  • Hye-Yeon Shim;MinSeo Kweun;DaYoung Yoon;JiYoung Seo;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • As big data was built due to the 4th Industrial Revolution, personalized services increased rapidly. As a result, the amount of personal information collected from online services has increased, and concerns about users' personal information leakage and privacy infringement have increased. Online service providers provide privacy policies to address concerns about privacy infringement of users, but privacy policies are often misused due to the long and complex problem that it is difficult for users to directly identify risk items. Therefore, there is a need for a method that can automatically check whether the privacy policy is safe. However, the safety verification technique of the conventional blacklist and machine learning-based privacy policy has a problem that is difficult to expand or has low accessibility. In this paper, to solve the problem, we propose a safety verification technique for the privacy policy using the GPT-3.5 API, which is a generative artificial intelligence. Classification work can be performed evenin a new environment, and it shows the possibility that the general public without expertise can easily inspect the privacy policy. In the experiment, how accurately the blacklist-based privacy policy and the GPT-based privacy policy classify safe and unsafe sentences and the time spent on classification was measured. According to the experimental results, the proposed technique showed 10.34% higher accuracy on average than the conventional blacklist-based sentence safety verification technique.

Development of Deep Recognition of Similarity in Show Garden Design Based on Deep Learning (딥러닝을 활용한 전시 정원 디자인 유사성 인지 모형 연구)

  • Cho, Woo-Yun;Kwon, Jin-Wook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.96-109
    • /
    • 2024
  • The purpose of this study is to propose a method for evaluating the similarity of Show gardens using Deep Learning models, specifically VGG-16 and ResNet50. A model for judging the similarity of show gardens based on VGG-16 and ResNet50 models was developed, and was referred to as DRG (Deep Recognition of similarity in show Garden design). An algorithm utilizing GAP and Pearson correlation coefficient was employed to construct the model, and the accuracy of similarity was analyzed by comparing the total number of similar images derived at 1st (Top1), 3rd (Top3), and 5th (Top5) ranks with the original images. The image data used for the DRG model consisted of a total of 278 works from the Le Festival International des Jardins de Chaumont-sur-Loire, 27 works from the Seoul International Garden Show, and 17 works from the Korea Garden Show. Image analysis was conducted using the DRG model for both the same group and different groups, resulting in the establishment of guidelines for assessing show garden similarity. First, overall image similarity analysis was best suited for applying data augmentation techniques based on the ResNet50 model. Second, for image analysis focusing on internal structure and outer form, it was effective to apply a certain size filter (16cm × 16cm) to generate images emphasizing form and then compare similarity using the VGG-16 model. It was suggested that an image size of 448 × 448 pixels and the original image in full color are the optimal settings. Based on these research findings, a quantitative method for assessing show gardens is proposed and it is expected to contribute to the continuous development of garden culture through interdisciplinary research moving forward.

Research on Training and Implementation of Deep Learning Models for Web Page Analysis (웹페이지 분석을 위한 딥러닝 모델 학습과 구현에 관한 연구)

  • Jung Hwan Kim;Jae Won Cho;Jin San Kim;Han Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.517-524
    • /
    • 2024
  • This study aims to train and implement a deep learning model for the fusion of website creation and artificial intelligence, in the era known as the AI revolution following the launch of the ChatGPT service. The deep learning model was trained using 3,000 collected web page images, processed based on a system of component and layout classification. This process was divided into three stages. First, prior research on AI models was reviewed to select the most appropriate algorithm for the model we intended to implement. Second, suitable web page and paragraph images were collected, categorized, and processed. Third, the deep learning model was trained, and a serving interface was integrated to verify the actual outcomes of the model. This implemented model will be used to detect multiple paragraphs on a web page, analyzing the number of lines, elements, and features in each paragraph, and deriving meaningful data based on the classification system. This process is expected to evolve, enabling more precise analysis of web pages. Furthermore, it is anticipated that the development of precise analysis techniques will lay the groundwork for research into AI's capability to automatically generate perfect web pages.

Exploring automatic scoring of mathematical descriptive assessment using prompt engineering with the GPT-4 model: Focused on permutations and combinations (프롬프트 엔지니어링을 통한 GPT-4 모델의 수학 서술형 평가 자동 채점 탐색: 순열과 조합을 중심으로)

  • Byoungchul Shin;Junsu Lee;Yunjoo Yoo
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.187-207
    • /
    • 2024
  • In this study, we explored the feasibility of automatically scoring descriptive assessment items using GPT-4 based ChatGPT by comparing and analyzing the scoring results between teachers and GPT-4 based ChatGPT. For this purpose, three descriptive items from the permutation and combination unit for first-year high school students were selected from the KICE (Korea Institute for Curriculum and Evaluation) website. Items 1 and 2 had only one problem-solving strategy, while Item 3 had more than two strategies. Two teachers, each with over eight years of educational experience, graded answers from 204 students and compared these with the results from GPT-4 based ChatGPT. Various techniques such as Few-Shot-CoT, SC, structured, and Iteratively prompts were utilized to construct prompts for scoring, which were then inputted into GPT-4 based ChatGPT for scoring. The scoring results for Items 1 and 2 showed a strong correlation between the teachers' and GPT-4's scoring. For Item 3, which involved multiple problem-solving strategies, the student answers were first classified according to their strategies using prompts inputted into GPT-4 based ChatGPT. Following this classification, scoring prompts tailored to each type were applied and inputted into GPT-4 based ChatGPT for scoring, and these results also showed a strong correlation with the teachers' scoring. Through this, the potential for GPT-4 models utilizing prompt engineering to assist in teachers' scoring was confirmed, and the limitations of this study and directions for future research were presented.

Comparative Study of Fish Detection and Classification Performance Using the YOLOv8-Seg Model (YOLOv8-Seg 모델을 이용한 어류 탐지 및 분류 성능 비교연구)

  • Sang-Yeup Jin;Heung-Bae Choi;Myeong-Soo Han;Hyo-tae Lee;Young-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.147-156
    • /
    • 2024
  • The sustainable management and enhancement of marine resources are becoming increasingly important issues worldwide. This study was conducted in response to these challenges, focusing on the development and performance comparison of fish detection and classification models as part of a deep learning-based technique for assessing the effectiveness of marine resource enhancement projects initiated by the Korea Fisheries Resources Agency. The aim was to select the optimal model by training various sizes of YOLOv8-Seg models on a fish image dataset and comparing each performance metric. The dataset used for model construction consisted of 36,749 images and label files of 12 different species of fish, with data diversity enhanced through the application of augmentation techniques during training. When training and validating five different YOLOv8-Seg models under identical conditions, the medium-sized YOLOv8m-Seg model showed high learning efficiency and excellent detection and classification performance, with the shortest training time of 13 h and 12 min, an of 0.933, and an inference speed of 9.6 ms. Considering the balance between each performance metric, this was deemed the most efficient model for meeting real-time processing requirements. The use of such real-time fish detection and classification models could enable effective surveys of marine resource enhancement projects, suggesting the need for ongoing performance improvements and further research.