• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.025 seconds

Performance Comparison of Reinforcement Learning Algorithms for Futures Scalping (해외선물 스캘핑을 위한 강화학습 알고리즘의 성능비교)

  • Jung, Deuk-Kyo;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.697-703
    • /
    • 2022
  • Due to the recent economic downturn caused by Covid-19 and the unstable international situation, many investors are choosing the derivatives market as a means of investment. However, the derivatives market has a greater risk than the stock market, and research on the market of market participants is insufficient. Recently, with the development of artificial intelligence, machine learning has been widely used in the derivatives market. In this paper, reinforcement learning, one of the machine learning techniques, is applied to analyze the scalping technique that trades futures in minutes. The data set consists of 21 attributes using the closing price, moving average line, and Bollinger band indicators of 1 minute and 3 minute data for 6 months by selecting 4 products among futures products traded at trading firm. In the experiment, DNN artificial neural network model and three reinforcement learning algorithms, namely, DQN (Deep Q-Network), A2C (Advantage Actor Critic), and A3C (Asynchronous A2C) were used, and they were trained and verified through learning data set and test data set. For scalping, the agent chooses one of the actions of buying and selling, and the ratio of the portfolio value according to the action result is rewarded. Experiment results show that the energy sector products such as Heating Oil and Crude Oil yield relatively high cumulative returns compared to the index sector products such as Mini Russell 2000 and Hang Seng Index.

Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery (다종 위성영상을 활용한 재난대응 방안 연구)

  • Jongsoo Park;Dalgeun Lee;Junwoo Lee;Eunji Cheon;Hagyu Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.755-770
    • /
    • 2023
  • Due to recent severe climate change, abnormal weather phenomena, and other factors, the frequency and magnitude of natural disasters are increasing. The need for disaster management using artificial satellites is growing, especially during large-scale disasters due to time and economic constraints. In this study, we have summarized the current status of next-generation medium-sized satellites and microsatellites in operation and under development, as well as trends in satellite imagery analysis techniques using a large volume of satellite imagery driven by the advancement of the space industry. Furthermore, by utilizing satellite imagery, particularly focusing on recent major disasters such as floods, landslides, droughts, and wildfires, we have confirmed how satellite imagery can be employed for damage analysis, thereby establishing its potential for disaster management. Through this study, we have presented satellite development and operational statuses, recent trends in satellite imagery analysis technology, and proposed disaster response strategies that utilize various types of satellite imagery. It was observed that during the stages of disaster progression, the utilization of satellite imagery is more prominent in the response and recovery stages than in the prevention and preparedness stages. In the future, with the availability of diverse imagery, we plan to research the fusion of cutting-edge technologies like artificial intelligence and deep learning, and their applicability for effective disaster management.

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

An Empirical Study for Performance Evaluation of Web Personalization Assistant Systems (웹 기반 개인화 보조시스템 성능 평가를 위한 실험적 연구)

  • Kim, Ki-Bum;Kim, Seon-Ho;Weon, Sung-Hyun
    • The Journal of Society for e-Business Studies
    • /
    • v.9 no.3
    • /
    • pp.155-167
    • /
    • 2004
  • At this time, the two main techniques for achieving web personalization assistant systems generally concern direct manipulation and software agents. While both direct manipulation and software agents are intended for permitting user to complete tasks rapidly, efficiently, and easily, their methodologies are different. The central debate involving these web personalization techniques originates from the amount of control that each allows to, or holds back from, the users. Direct manipulation can provide users with comprehensibel, predictable and controllable user interfaces that give them a feeling of accomplishnent and responsibility. On the other hand, the intelligent software components, the agents, can assist users with artificial intelligence by monitoring or retrieving personal histories or behaviors. In this empirical study, two web personalization assistant systems are evaluated. One of them, WebPersonalizer, is an agent based user personalization tool; the other, AntWorld, is a collaborative recommendation tool which provides direct manipulation interfaces. Through this empirical study, we have focused on two different paradigms as web personalization assistant systems : direct manipulation and software agents. Each approach has its own advantages and disadvantages. We also provide the experimental result that is worth referring for developers of electronic commerce system and suggest the methodologies for conveniently retrieving necessary information based on their personal needs.

  • PDF

Forest Management Research using Optical Sensors and Remote Sensing Technologies (광학센서를 활용한 산림분야 원격탐사 활용기술)

  • Kim, Eun-sook;Won, Myoungsoo;Kim, Kyoungmin;Park, Joowon;Lee, Jung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1031-1035
    • /
    • 2019
  • Nowadays, the utilization infrastructure of domestic satellite information is expanding rapidly. Especially, the development of agriculture and forestry satellite is expected to drastically change the utilization of satellite information in the forest sector. The launch of the satellite is expected in 2023. Therefore, NIFoS and academic experts in forest sectors have prepared "Special Issue on Forest Management Research using Optical Sensors and Remote Sensing Technologies" in order to understand new remote sensing technologies and suggest the future direction of forest research and decision-making. This special issue is focused on a variety of fields in forest remote sensing research, including forest resources survey, forest disaster detection, and forest ecosystem monitoring. The new research topics for remote sensing technologies in forest sector focuses on three points: development of new indicators and information for accurate detection of forest conditions and changes, the use of new information sources such as UAV and new satellites, and techniques for improving accuracy through the use of artificial intelligence techniques.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

IoT data processing techniques based on machine learning optimized for AIoT environments (AIoT 환경에 최적화된 머신러닝 기반의 IoT 데이터 처리 기법)

  • Jeong, Yoon-Su;Kim, Yong-Tae
    • Journal of Industrial Convergence
    • /
    • v.20 no.3
    • /
    • pp.33-40
    • /
    • 2022
  • Recently, IoT-linked services have been used in various environments, and IoT and artificial intelligence technologies are being fused. However, since technologies that process IoT data stably are not fully supported, research is needed for this. In this paper, we propose a processing technique that can optimize IoT data after generating embedded vectors based on machine learning for IoT data. In the proposed technique, for processing efficiency, embedded vectorization is performed based on QR such as index of IoT data, collection location (binary values of X and Y axis coordinates), group index, type, and type. In addition, data generated by various IoT devices are integrated and managed so that load balancing can be performed in the IoT data collection process to asymmetrically link IoT data. The proposed technique processes IoT data to be orthogonalized based on hash so that IoT data can be asymmetrically grouped. In addition, interference between IoT data may be minimized because it is periodically generated and grouped according to IoT data types and characteristics. Future research plans to compare and evaluate proposed techniques in various environments that provide IoT services.

Fruit's Defective Area Detection Using Yolo V4 Deep Learning Intelligent Technology (Yolo V4 딥러닝 지능기술을 이용한 과일 불량 부위 검출)

  • Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.46-55
    • /
    • 2022
  • It is very important to first detect and remove defective fruits with scratches or bruised areas in the automatic fruit quality screening system. This paper proposes a method of detecting defective areas in fruits using the latest artificial intelligence technology, the Yolo V4 deep learning model in order to overcome the limitations of the method of detecting fruit's defective areas using the existing image processing techniques. In this study, a total of 2,400 defective fruits, including 1,000 defective apples and 1,400 defective fruits with scratch or decayed areas, were learned using the Yolo V4 deep learning model and experiments were conducted to detect defective areas. As a result of the performance test, the precision of apples is 0.80, recall is 0.76, IoU is 69.92% and mAP is 65.27%. The precision of pears is 0.86, recall is 0.81, IoU is 70.54% and mAP is 68.75%. The method proposed in this study can dramatically improve the performance of the existing automatic fruit quality screening system by accurately selecting fruits with defective areas in real time rather than using the existing image processing techniques.

A Study on the Cloud Detection Technique of Heterogeneous Sensors Using Modified DeepLabV3+ (DeepLabV3+를 이용한 이종 센서의 구름탐지 기법 연구)

  • Kim, Mi-Jeong;Ko, Yun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.511-521
    • /
    • 2022
  • Cloud detection and removal from satellite images is an essential process for topographic observation and analysis. Threshold-based cloud detection techniques show stable performance because they detect using the physical characteristics of clouds, but they have the disadvantage of requiring all channels' images and long computational time. Cloud detection techniques using deep learning, which have been studied recently, show short computational time and excellent performance even using only four or less channel (RGB, NIR) images. In this paper, we confirm the performance dependence of the deep learning network according to the heterogeneous learning dataset with different resolutions. The DeepLabV3+ network was improved so that channel features of cloud detection were extracted and learned with two published heterogeneous datasets and mixed data respectively. As a result of the experiment, clouds' Jaccard index was low in a network that learned with different kind of images from test images. However, clouds' Jaccard index was high in a network learned with mixed data that added some of the same kind of test data. Clouds are not structured in a shape, so reflecting channel features in learning is more effective in cloud detection than spatial features. It is necessary to learn channel features of each satellite sensors for cloud detection. Therefore, cloud detection of heterogeneous sensors with different resolutions is very dependent on the learning dataset.

A Study on Forgery Techniques of Smartphone Voice Recording File Structure and Metadata (스마트폰 음성녹음 파일 구조 및 메타데이터의 위변조 기법에 관한 연구)

  • Park, Jae Wan;Kwak, Won Jun;Lee, John Sanghyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.807-812
    • /
    • 2022
  • Recently, as the number of voice recording files submitted as court evidence increases, the number of cases claiming forgery is also increasing. If the audio recording file structure and metadata, which are objective grounds, are completely forged, it is actually impossible to detect forgery of the sophisticated audio recording file. It is extremely rare for the court to reject the file structure and metadata analysis performed with the forged audio recording file. The purpose of this study is to prove that forgery of voice recording file structure and metadata is easily possible. To this end, in this study, it was introduced that forgery detection is impossible when the 'mixed paste' function, which enables sophisticated editing based on the typification of the editing method of voice recording files, is applied. Moreover, it has been proven through experiments that forgery of file structure and metadata is possible. Therefore, a stricter standard for judging the admissibility of evidence is required when the audio recording file is adopted as digital evidence. This study will not only contribute to the standard of integrity in the adoption of digital evidence by judges, but will also contribute to the method of constructing a dataset for artificial intelligence in detecting forgery of recorded files that is expected to be developed in the future.