• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.027 seconds

Designing Reward Function for Cooperative Traffic Signal Control at Multi-intersection (다중 교차로에서 협동적 신호제어를 위한 보상함수 설계)

  • Bae, Yo-han;Jang, Jin-heon;Song, Moon-hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.110-113
    • /
    • 2022
  • Nowadays, breaking through the conventional traffic signal control method based on mathematical optimization, artificial intelligence began to be used in the area. In response to this trend, many studies are ongoing to figure out how to utilize AI technology properly for traffic signal optimization. They just simply focus on which method will work well besides lots of machine learning techniques and abandon the reward function engineering. In many cases, the reward function consists of the average delay of the vehicles in the intersection. However, this may lead to AI's misunderstanding about the traffic signal control: what AI regards as a good situation may not be realistic. Even the reward function itself may not meet the service level. Therefore, this study analyzes the problems of previous reward functions and will suggest how to reward function can be enhanced.

  • PDF

Diagnosis of Inter Turn Short Circuit in 3-Phase Induction Motors Using Applied Clarke Transformation (Clarke 변환을 응용한 3상 유도전동기의 Inter Turn Short Circuit 진단)

  • Yeong-Jin Goh;Kyoung-Min Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.518-523
    • /
    • 2023
  • The diagnosis of Inter Turn Short Circuits (ITSC) in induction motors is critical due to the escalating severity of faults resulting from even minor disruptions in the stator windings. However, diagnosing ITSC presents significant challenges due to similarities in noise and losses shared with 3-phase induction motors. Although artificial intelligence techniques have been explored for efficient diagnosis, practical applications heavily rely on model-based methods, necessitating further research to enhance diagnostic performance. This study proposed a diagnostic method applied the Clarke Transformation approach, focusing solely on current components while disregarding changes in rotating flux. Experimental results conducted over a 30-minute period, encompassing both normal and ITSC conditions, demonstrate the effectiveness of the proposed approach, with FAR(False Accept Rates) of 0.2% for normal-to-ITSC FRR(False Rejection Rates) and 0.26% for ITSC-to-normal FRR. These findings underscore the efficacy of the proposed approach.

AI Crime Prediction Modeling Based on Judgment and the 8 Principles (판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링)

  • Hye-sung Jung;Eun-bi Cho;Jeong-hyeon Chang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • In the 4th industrial revolution, the field of criminal justice is paying attention to Legaltech using artificial intelligence to provide efficient legal services. This paper attempted to create a crime prediction model that can apply Recurrent Neural Network(RNN) to increase the potential for using legal technology in the domestic criminal justice field. To this end, the crime process was divided into pre, during, and post stages based on the criminal facts described in the judgment, utilizing crime script analysis techniques. In addition, at each time point, the method and evidence of crime were classified into objects, actions, and environments based on the sentence composition elements and the 8 principles of investigation. The case summary analysis framework derived from this study can contribute to establishing situational crime prevention strategies because it is easy to identify typical patterns of specific crime methods. Furthermore, the results of this study can be used as a useful reference for research on generating crime situation prediction data based on RNN models in future follow-up studies.

Development of a Flooding Detection Learning Model Using CNN Technology (CNN 기술을 적용한 침수탐지 학습모델 개발)

  • Dong Jun Kim;YU Jin Choi;Kyung Min Park;Sang Jun Park;Jae-Moon Lee;Kitae Hwang;Inhwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2023
  • This paper developed a training model to classify normal roads and flooded roads using artificial intelligence technology. We expanded the diversity of learning data using various data augmentation techniques and implemented a model that shows good performance in various environments. Transfer learning was performed using the CNN-based Resnet152v2 model as a pre-learning model. During the model learning process, the performance of the final model was improved through various parameter tuning and optimization processes. Learning was implemented in Python using Google Colab NVIDIA Tesla T4 GPU, and the test results showed that flooding situations were detected with very high accuracy in the test dataset.

Convolutional Neural Network Model Using Data Augmentation for Emotion AI-based Recommendation Systems

  • Ho-yeon Park;Kyoung-jae Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.57-66
    • /
    • 2023
  • In this study, we propose a novel research framework for the recommendation system that can estimate the user's emotional state and reflect it in the recommendation process by applying deep learning techniques and emotion AI (artificial intelligence). To this end, we build an emotion classification model that classifies each of the seven emotions of angry, disgust, fear, happy, sad, surprise, and neutral, respectively, and propose a model that can reflect this result in the recommendation process. However, in the general emotion classification data, the difference in distribution ratio between each label is large, so it may be difficult to expect generalized classification results. In this study, since the number of emotion data such as disgust in emotion image data is often insufficient, correction is made through augmentation. Lastly, we propose a method to reflect the emotion prediction model based on data through image augmentation in the recommendation systems.

Research on Driving Pattern Analysis Techniques Using Contrastive Learning Methods (대조학습 방법을 이용한 주행패턴 분석 기법 연구)

  • Hoe Jun Jeong;Seung Ha Kim;Joon Hee Kim;Jang Woo Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.182-196
    • /
    • 2024
  • This study introduces driving pattern analysis and change detection methods using smartphone sensors, based on contrastive learning. These methods characterize driving patterns without labeled data, allowing accurate classification with minimal labeling. In addition, they are robust to domain changes, such as different vehicle types. The study also examined the applicability of these methods to smartphones by comparing them with six lightweight deep-learning models. This comparison supported the development of smartphone-based driving pattern analysis and assistance systems, utilizing smartphone sensors and contrastive learning to enhance driving safety and efficiency while reducing the need for extensive labeled data. This research offers a promising avenue for addressing contemporary transportation challenges and advancing intelligent transportation systems.

AI Security Vulnerabilities in Fully Unmanned Stores: Adversarial Patch Attacks on Object Detection Model & Analysis of the Defense Effectiveness of Data Augmentation (완전 무인 매장의 AI 보안 취약점: 객체 검출 모델에 대한 Adversarial Patch 공격 및 Data Augmentation의 방어 효과성 분석)

  • Won-ho Lee;Hyun-sik Na;So-hee Park;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.245-261
    • /
    • 2024
  • The COVID-19 pandemic has led to the widespread adoption of contactless transactions, resulting in a noticeable increase in the trend towards fully unmanned stores. In such stores, all operational processes are automated, primarily using artificial intelligence (AI) technology. However, this AI technology has several security vulnerabilities, which can be critical in the environment of fully unmanned stores. This paper analyzes the security vulnerabilities that AI-based fully unmanned stores may face, focusing particularly on the object detection model YOLO, demonstrating that Hiding Attacks and Altering Attacks using adversarial patches are possible. It is confirmed that objects with adversarial patches attached may not be recognized by the detection model or may be incorrectly recognized as other objects. Furthermore, the paper analyzes how Data Augmentation techniques can mitigate security threats by providing a defensive effect against adversarial patch attacks. Based on these results, we emphasize the need for proactive research into defensive measures to address the inherent security threats in AI technology used in fully unmanned stores.

Development of Machine Learning Model to Predict Hydrogen Maser Holdover Time (수소 메이저 홀드오버 시간예측을 위한 머신러닝 모델 개발)

  • Sang Jun Kim;Young Kyu Lee;Joon Hyo Rhee;Juhyun Lee;Gyeong Won Choi;Ju-Ik Oh;Donghui Yu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.111-115
    • /
    • 2024
  • This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE: 221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the complex nature of data that changes over time and how well the model reflects this. The application of a machine learning prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series prediction and achieve improved prediction performance.

Exploring the Performance of Multi-Label Feature Selection for Effective Decision-Making: Focusing on Sentiment Analysis (효과적인 의사결정을 위한 다중레이블 기반 속성선택 방법에 관한 연구: 감성 분석을 중심으로)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.47-73
    • /
    • 2023
  • Management decision-making based on artificial intelligence(AI) plays an important role in helping decision-makers. Business decision-making centered on AI is evaluated as a driving force for corporate growth. AI-based on accurate analysis techniques could support decision-makers in making high-quality decisions. This study proposes an effective decision-making method with the application of multi-label feature selection. In this regard, We present a CFS-BR (Correlation-based Feature Selection based on Binary Relevance approach) that reduces data sets in high-dimensional space. As a result of analyzing sample data and empirical data, CFS-BR can support efficient decision-making by selecting the best combination of meaningful attributes based on the Best-First algorithm. In addition, compared to the previous multi-label feature selection method, CFS-BR is useful for increasing the effectiveness of decision-making, as its accuracy is higher.

Beyond Coronary CT Angiography: CT Fractional Flow Reserve and Perfusion (전산화단층촬영 관상동맥조영술: 분획혈류예비력과 심근관류 영상)

  • Moon Young Kim;Dong Hyun Yang;Ki Seok Choo;Whal Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.3-27
    • /
    • 2022
  • Cardiac CT has been proven to provide diagnostic and prognostic evaluation of coronary artery disease for cardiovascular risk stratification and treatment decision-making based on rapid technological development and various research evidence. Coronary CT angiography has emerged as a gateway test for coronary artery disease that can reduce invasive angiography due to its high negative predictive value, but the diagnostic specificity is relatively low. However, coronary CT angiography is likely to overcome its limitations through functional evaluation to identify the hemodynamic significance of coronary artery disease by analyzing myocardial perfusion and fractional flow reserve through cardiac CT. Recently, studies have been actively conducted to incorporate artificial intelligence to make this more objective and reproducible. In this review, functional imaging techniques of cardiac computerized tomography are explored.