• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.028 seconds

Dynamic Resource Reservation for Ultra-low Latency IoT Air-Interface Slice

  • Sun, Guolin;Wang, Guohui;Addo, Prince Clement;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3309-3328
    • /
    • 2017
  • The application of Internet of Things (IoT) in the next generation cellular networks imposes a new characteristic on the data traffic, where a massive number of small packets need to be transmitted. In addition, some emerging IoT-based emergency services require a real-time data delivery within a few milliseconds, referring to as ultra-low latency transmission. However, current techniques cannot provide such a low latency in combination with a mice-flow traffic. In this paper, we propose a dynamic resource reservation schema based on an air-interface slicing scheme in the context of a massive number of sensors with emergency flows. The proposed schema can achieve an air-interface latency of a few milliseconds by means of allowing emergency flows to be transported through a dedicated radio connection with guaranteed network resources. In order to schedule the delay-sensitive flows immediately, dynamic resource updating, silence-probability based collision avoidance, and window-based re-transmission are introduced to combine with the frame-slotted Aloha protocol. To evaluate performance of the proposed schema, a probabilistic model is provided to derive the analytical results, which are compared with the numerical results from Monte-Carlo simulations.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Application of Market Basket Analysis to One-to-One Marketing on Internet Storefront (인터넷 쇼핑몰에서 원투원 마케팅을 위한 장바구니 분석 기법의 활용)

  • 강동원;이경미
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1175-1182
    • /
    • 2001
  • One to one Marketing (a.k.a. database marketing or relationship marketing) is one of the many fields that will benefit from the electronic revolution and shifts in consumer sales and advertising. As a component of intelligent customer services on Internet storefront, this paper describes technology of providing personalized advertisement using the market basket analysis, a well-Known data mining technique. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customer's data. However, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed Knowledge base. In this paper, using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store.

  • PDF

A Scheme on Object Tracking Techniques in Multiple CCTV IoT Environments (다중 CCTV 사물인터넷 환경에서의 객체 추적 기법)

  • Hong, Ji-Hoon;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2019
  • This study suggests a methodology to track crime suspects or anomalies through CCTV in order to expand the scope of CCTV use as the number of CCTV installations continues to increase nationwide in recent years. For the abnormal behavior classification, we use the existing studies to find out suspected criminals or abnormal actors, use CNN to track objects, and connect the surrounding CCTVs to each other to predict the movement path of objectified objects CCTVs in the vicinity of the path were used to share objects' sample data to track objects and to track objects. Through this research, we will keep track of criminals who can not be traced, contribute to the national security, and continue to study them so that more diverse technologies can be applied to CCTV.

Integrated Multiple Simulation for Optimizing Performance of Stock Trading Systems based on Neural Networks (통합 다중 시뮬레이션에 의한 신경망 기반 주식 거래 시스템의 성능 최적화)

  • Lee, Jae-Won;O, Jang-Min
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.127-134
    • /
    • 2007
  • There are many researches about the intelligent stock trading systems with the help of the advance of the artificial intelligence such as machine learning techniques, Though the establishment of the reasonable trading policy plays an important role in the performance of the trading systems most researches focused on the improvement of the predictability. Also some previous works, which treated the trading policy, treated the simplified versions dependent on the predictors in less systematic ways. In this paper, we propose the integrated multiple simulation' as a method of optimizing trading performance of stock trading systems. The propose method is adopted in the NXShell a development environment for neural network based stock trading systems. Under the proposed integrated multiple simulation', we simulate the multiple tradings for all combinations of the neural network's outputs and the trading policy parameters, evaluate the learning performance according to the various metrics and establish the optimal policy for a given prediction module based on the resulting performance. In the experiment, we present the trading policy comparison results using the stock value data from the KOSPI and KOSDAQ.

A Study on the PI Controller of AC Servo Motor using Genetic Algorithm (유전자알고리즘을 이용한 교류서보전동기의 PI 제어기에 관한 연구)

  • Kim, Hwan;Park, Se-Seung;Choi, Youn-Ok;Cho, Geum-Bae;Kim, Pyoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.81-91
    • /
    • 2006
  • Recently, G.A studies have studied and demonstrated that artificial intelligence like G.A networks, G.A PI controller. The design techniques of PI controller using G.A with the newly proposed teaming algorithm was presented, and the designed controller with AC servo motor system. The goal of this paper is to design the AC servo motor using genetic algorithm and to control drive robot. And in this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for genetic algorithm PI controller. Our experimental results show that this approach increases overall classification accuracy rate significantly. Finally, we executed for the implementation of high performance speed control system. It is used a 16-bit DSP, IMS320LF2407, which is capable of the high speed and floating point calculation.

Topic Analysis Using Big Data Related to 'Blockchain usage': Focused on Newspaper Articles ('블록체인 활용' 관련 빅데이터를 활용한 토픽 분석: 신문기사를 중심으로)

  • Kim, Sungae;Jun, Soojin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.73-78
    • /
    • 2020
  • To analyze the main topics related to the use of blockchain technology, the Topic Modeling Technique was applied to the 'Blockchain Technology Utilization' big data shown in newspaper articles. To this end, from 2013 to 2019, when newspaper articles on the use of blockchain technology first appeared, the topics were extracted from 21 newspapers and analyzed by time to 15,537 articles. As a result of the analysis, articles related to the utilization of blockchain technology have increased exponentially since 2015 and focused on IT_science and economics. Key words related to cryptocurrency, bitcoin and virtual currency were weighted high, although they differed depending on time. Blockchain technology, which had focused on financial transactions, gradually expanded to big data, Internet of Things and artificial intelligence. As a result, changes in corporate topics were also made together to expand into various fields at banks for financial transactions, focusing on large and global companies. The study showed how these topics were changing, along with the main topics in newspaper articles related to the use of blockchain technology.

A STUDY ON SATELLITE DIAGNOSTIC EXPERT SYSTEMS USING CASE-BASED APPROACH (사례기반 추론을 이용한 위성 고장진단 전문가 시스템 구축)

  • 박영택;김재훈;박현수
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.166-178
    • /
    • 1997
  • Many research works are on going to monitor and diagnose diverse malfunctions of satellite systems as the complexity and number of satellites increase. Currently, many works on monitoring and diagnosis are carried out by human experts but there are needs to automate much of the routine works of them. Hence, it is necessary to study on using expert systems which can assist human experts routine work by doing automatically, thereby allow human experts devote their expertise more critical and important areas of monitoring and diagnosis. In this paper, we are employing artificial intelligence techniques to model human expert's knowledge and inference the constructed knowledge. Especially, case-based approaches are used to construct a knowledge base to model human expert capabilities which use previous typical exemplars. We have designed and implemented a prototype case-based system for diagnosing satellite malfunctions using cases. Our system remembers typical failure cases and diagnoses a current malfunction by indexing the case base. Diverse methods are used to build a more user friendly interface which allows human experts can build a knowledge base in an easy way.

  • PDF

Prediction of Local Scour Around Bridge Piers Using GEP Model (GEP 모형을 이용한 교각주위 국부세굴 예측)

  • Kim, Taejoon;Choi, Byungwoong;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1779-1786
    • /
    • 2014
  • Artificial Intelligence-based techniques have been applied to problems where mathematical relations can not be presented due to complicatedness of the physical process. A representative example in hydraulics is the local scour around bridge piers. This study presents a GEP model for predicting the local scour around bridge piers. The model is trained by 64 laboratory data to build the regression equation, and the constructed model is verified against 33 laboratory data. Comparisons between the models with dimensional and normalized variables reveals that the GEP model with dimensional variables predicts better. The proposed model is now applied to two field datasets. It is found that the MAPE of the scour depths predicted by the GEP model increases compared with the predictions of local scours in laboratory scale. In addition, the model performance increases significantly when the model is trained by the field dataset rather than the laboratory dataset. The findings suggest that apart from the ANN model, GEP model is a sound and reliable model for predicting local scour depth.

For Improving Security Log Big Data Analysis Efficiency, A Firewall Log Data Standard Format Proposed (보안로그 빅데이터 분석 효율성 향상을 위한 방화벽 로그 데이터 표준 포맷 제안)

  • Bae, Chun-sock;Goh, Sung-cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.157-167
    • /
    • 2020
  • The big data and artificial intelligence technology, which has provided the foundation for the recent 4th industrial revolution, has become a major driving force in business innovation across industries. In the field of information security, we are trying to develop and improve an intelligent security system by applying these techniques to large-scale log data, which has been difficult to find effective utilization methods before. The quality of security log big data, which is the basis of information security AI learning, is an important input factor that determines the performance of intelligent security system. However, the difference and complexity of log data by various product has a problem that requires excessive time and effort in preprocessing big data with poor data quality. In this study, we research and analyze the cases related to log data collection of various firewall. By proposing firewall log data collection format standard, we hope to contribute to the development of intelligent security systems based on security log big data.