• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.029 seconds

Empirical Process Monitoring Via On-line Analysis of Complex Process Measurement Data (복잡한 공정 측정 데이터의 실시간 분석을 통한 공정 감시)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.374-379
    • /
    • 2016
  • On-line process monitoring schemes are designed to give early warnings of process faults. In the artificial intelligence and machine learning fields, reliable approaches have been utilized, such as kernel-based nonlinear techniques. This work presents a kernel-based empirical monitoring scheme with a small sample problem. The measurement data of normal operations are easy to collect, whereas special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing the process monitoring performance. This can be achieved by the preprocessing of raw process data and eliminating unwanted variations of data. In this work, the performance of several monitoring schemes was demonstrated using three-dimensional batch process data. The results showed that the monitoring performance was improved significantly in terms of the detection success rate.

A study on counting number of passengers by moving object detection (이동 객체 검출을 통한 승객 인원 개수에 대한 연구)

  • Yoo, Sang-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.9-18
    • /
    • 2020
  • In the field of image processing, a method of detecting and counting passengers as moving objects when getting on and off the bus has been studied. Among these technologies, one of the artificial intelligence techniques, the deep learning technique is used. As another method, a method of detecting an object using a stereo vision camera is also used. However, these techniques require expensive hardware equipment because of the computational complexity of used to detect objects. However, most video equipments have a significant decrease in computational processing power, and thus, in order to detect passengers on the bus, there is a need for an image processing technology suitable for various equipment using a relatively low computational technique. Therefore, in this paper, we propose a technique that can efficiently obtain the number of passengers on the bus by detecting the contour of the object through the background subtraction suitable for low-cost equipment. Experiments have shown that passengers were counted with approximately 70% accuracy on lower-end machines than those equipped with stereo vision camera.

Prediction of English Premier League Game Using an Ensemble Technique (앙상블 기법을 통한 잉글리시 프리미어리그 경기결과 예측)

  • Yi, Jae Hyun;Lee, Soo Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.161-168
    • /
    • 2020
  • Predicting outcome of the sports enables teams to establish their strategy by analyzing variables that affect overall game flow and wins and losses. Many studies have been conducted on the prediction of the outcome of sports events through statistical techniques and machine learning techniques. Predictive performance is the most important in a game prediction model. However, statistical and machine learning models show different optimal performance depending on the characteristics of the data used for learning. In this paper, we propose a new ensemble model to predict English Premier League soccer games using statistical models and the machine learning models which showed good performance in predicting the results of the soccer games and this model is possible to select a model that performs best when predicting the data even if the data are different. The proposed ensemble model predicts game results by learning the final prediction model with the game prediction results of each single model and the actual game results. Experimental results for the proposed model show higher performance than the single models.

A Study on the Application of AI and Linkage System for Safety in the Autonomous Driving (자율주행시 안전을 위한 AI와 연계 시스템 적용연구)

  • Seo, Dae-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.95-100
    • /
    • 2019
  • In this paper, autonomous vehicles of service with existing vehicle accident for the prevention of the vehicle communication technology, self-driving techniques, brakes automatic control technology, artificial intelligence technologies such as well and developed the vehicle accident this occur to death or has been techniques, can prepare various safety cases intended to minimize the injury. In this paper, it is a study to secure safety in autonomous vehicles. This is determined according to spatial factors such as chip signals for general low-power short-range wireless communication and micro road AI. On the other hand, in this paper, the safety of boarding is improved by checking the signal from the electronic chip, up to "recognition of the emotion from residence time in the sensing area" to the biological electronic chip. As a result of demonstrating the reliability of the world countries the world, inducing safety autonomous system of all passengers in terms of safety. Unmanned autonomous vehicle riding and commercialization will lead to AI systems and biochips (Verification), linked IoT on the road in the near future, and the safety technology reliability of the world will be highlighted.

Topic Modeling on Research Trends of Industry 4.0 Using Text Mining (텍스트 마이닝을 이용한 4차 산업 연구 동향 토픽 모델링)

  • Cho, Kyoung Won;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.764-770
    • /
    • 2019
  • In this research, text mining techniques were used to analyze the papers related to the "4th Industry". In order to analyze the papers, total of 685 papers were collected by searching with the keyword "4th industry" in Korea Journal Index(KCI) from 2016 to 2019. We used Python-based web scraping program to collect papers and use topic modeling techniques based on LDA algorithm implemented in R language for data analysis. As a result of perplexity analysis on the collected papers, nine topics were determined optimally and nine representative topics of the collected papers were extracted using the Gibbs sampling method. As a result, it was confirmed that artificial intelligence, big data, Internet of things(IoT), digital, network and so on have emerged as the major technologies, and it was confirmed that research has been conducted on the changes due to the major technologies in various fields related to the 4th industry such as industry, government, education field, and job.

Technology of Lessons Learned Analysis using Artificial intelligence: Focused on the 'L2-OODA Ensemble Algorithm' (인공지능형 전훈분석기술: 'L2-OODA 앙상블 알고리즘'을 중심으로)

  • Yang, Seong-sil;Shin, Jin
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.67-79
    • /
    • 2021
  • Lessons Learned(LL) is a military term defined as all activities that promote future development by finding problems and need improvement in education and reality in the field of warfare development. In this paper, we focus on presenting actual examples and applying AI analysis inference techniques to solve revealed problems in promoting LL activities, such as long-term analysis, budget problems, and necessary expertise. AI legal advice services using cognitive computing-related technologies that have already been practical and in use, were judged to be the best examples to solve the problems of LL. This paper presents intelligent LL inference techniques, which utilize AI. To this end, we want to explore theoretical backgrounds such as LL analysis definitions and examples, evolution of AI into Machine Learning, cognitive computing, and apply it to new technologies in the defense sector using the newly proposed L2-OODA ensemble algorithm to contribute to implementing existing power improvement and optimization.

Finding the Optimal Data Classification Method Using LDA and QDA Discriminant Analysis

  • Kim, SeungJae;Kim, SungHwan
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.132-140
    • /
    • 2020
  • With the recent introduction of artificial intelligence (AI) technology, the use of data is rapidly increasing, and newly generated data is also rapidly increasing. In order to obtain the results to be analyzed based on these data, the first thing to do is to classify the data well. However, when classifying data, if only one classification technique belonging to the machine learning technique is applied to classify and analyze it, an error of overfitting can be accompanied. In order to reduce or minimize the problems caused by misclassification of the classification system such as overfitting, it is necessary to derive an optimal classification by comparing the results of each classification by applying several classification techniques. If you try to interpret the data with only one classification technique, you will have poor reasoning and poor predictions of results. This study seeks to find a method for optimally classifying data by looking at data from various perspectives and applying various classification techniques such as LDA and QDA, such as linear or nonlinear classification, as a process before data analysis in data analysis. In order to obtain the reliability and sophistication of statistics as a result of big data analysis, it is necessary to analyze the meaning of each variable and the correlation between the variables. If the data is classified differently from the hypothesis test from the beginning, even if the analysis is performed well, unreliable results will be obtained. In other words, prior to big data analysis, it is necessary to ensure that data is well classified to suit the purpose of analysis. This is a process that must be performed before reaching the result by analyzing the data, and it may be a method of optimal data classification.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Recent Progress in Multiplexed Detection of Biomarkers Based on Quantum Dots (양자점 기반 다중 바이오마커 검출법의 연구동향)

  • Kim, Yerin;Choi, Yu Rim;Kim, Bong-Geun;Na, Hyon Bin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.451-458
    • /
    • 2022
  • Semiconductor quantum dots (QDs) are optical probes with excellent fluorescence properties. Therefore, they have been applied to various bio-medical imaging techniques and biosensors. Due to the unique optical characteristics of wide absorption and narrow fluorescence energy bands, multiple types of signals can be generated by the combination of fluorescence wavelengths from different QDs, which enables the simultaneous detection of more than two biomarkers. In this review, the advantages and applications of QDs and QD nanobeads (QBs) in multiple biomarker assays were described, and new developments or improvements in multiplexed biomarker detection techniques were summarized. In particular, recent reports were summarized, focusing on the design strategies in immunoassay construction and signal transducing materials for fluorescence-linked immunosorbent assays using QDs and immunochromatographic assays using QBs. New detection platforms will be developed for early diagnosis of diseases and other fields if multiplexed detection technologies of excellent accuracy and sensitivity are combined with artificial intelligence algorithms.

Ensemble-based deep learning for autonomous bridge component and damage segmentation leveraging Nested Reg-UNet

  • Abhishek Subedi;Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.335-349
    • /
    • 2023
  • Bridges constantly undergo deterioration and damage, the most common ones being concrete damage and exposed rebar. Periodic inspection of bridges to identify damages can aid in their quick remediation. Likewise, identifying components can provide context for damage assessment and help gauge a bridge's state of interaction with its surroundings. Current inspection techniques rely on manual site visits, which can be time-consuming and costly. More recently, robotic inspection assisted by autonomous data analytics based on Computer Vision (CV) and Artificial Intelligence (AI) has been viewed as a suitable alternative to manual inspection because of its efficiency and accuracy. To aid research in this avenue, this study performs a comparative assessment of different architectures, loss functions, and ensembling strategies for the autonomous segmentation of bridge components and damages. The experiments lead to several interesting discoveries. Nested Reg-UNet architecture is found to outperform five other state-of-the-art architectures in both damage and component segmentation tasks. The architecture is built by combining a Nested UNet style dense configuration with a pretrained RegNet encoder. In terms of the mean Intersection over Union (mIoU) metric, the Nested Reg-UNet architecture provides an improvement of 2.86% on the damage segmentation task and 1.66% on the component segmentation task compared to the state-of-the-art UNet architecture. Furthermore, it is demonstrated that incorporating the Lovasz-Softmax loss function to counter class imbalance can boost performance by 3.44% in the component segmentation task over the most employed alternative, weighted Cross Entropy (wCE). Finally, weighted softmax ensembling is found to be quite effective when used synchronously with the Nested Reg-UNet architecture by providing mIoU improvement of 0.74% in the component segmentation task and 1.14% in the damage segmentation task over a single-architecture baseline. Overall, the best mIoU of 92.50% for the component segmentation task and 84.19% for the damage segmentation task validate the feasibility of these techniques for autonomous bridge component and damage segmentation using RGB images.