• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.025 seconds

Long-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants

  • Hyojin Kim;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1630-1643
    • /
    • 2023
  • The correct situation awareness (SA) of operators is important for managing nuclear power plants (NPPs), particularly in accident-related situations. Among the three levels of SA suggested by Ensley, Level 3 SA (i.e., projection of the future status of the situation) is challenging because of the complexity of NPPs as well as the uncertainty of accidents. Hence, several prediction methods using artificial intelligence techniques have been proposed to assist operators in accident prediction. However, these methods only predict short-term plant status (e.g., the status after a few minutes) and do not provide information regarding the uncertainty associated with the prediction. This paper proposes an algorithm that can predict the multivariate and long-term behavior of plant parameters for 2 h with 120 steps and provide the uncertainty of the prediction. The algorithm applies bidirectional long short-term memory and an attention mechanism, which enable the algorithm to predict the precise long-term trends of the parameters with high prediction accuracy. A conditional variational autoencoder was used to provide uncertainty information about the network prediction. The algorithm was trained, optimized, and validated using a compact nuclear simulator for a Westinghouse 900 MWe NPP.

A Study on Total Production Time Prediction Using Machine Learning Techniques (머신러닝 기법을 이용한 총생산시간 예측 연구)

  • Eun-Jae Nam;Kwang-Soo Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.159-165
    • /
    • 2023
  • The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.

A Study on Privacy Preserving Machine Learning (프라이버시 보존 머신러닝의 연구 동향)

  • Han, Woorim;Lee, Younghan;Jun, Sohee;Cho, Yungi;Paek, Yunheung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.924-926
    • /
    • 2021
  • AI (Artificial Intelligence) is being utilized in various fields and services to give convenience to human life. Unfortunately, there are many security vulnerabilities in today's ML (Machine Learning) systems, causing various privacy concerns as some AI models need individuals' private data to train them. Such concerns lead to the interest in ML systems which can preserve the privacy of individuals' data. This paper introduces the latest research on various attacks that infringe data privacy and the corresponding defense techniques.

Analysis of Key Success Factors for Building a Smart Supply Chain Using AHP (AHP를 이용한 스마트 공급망 구축을 위한 주요 성공요인 분석)

  • Cheol-Soo Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.1-15
    • /
    • 2023
  • With the advent of the Fourth Industrial Revolution, propelled by digital technology, we are transitioning into an era of hyperconnectivity, where everything and objects are becoming interconnected. A smart supply chain refers to a supply chain system where various sensors and RFID tags are attached to objects such as machinery and products used in the manufacturing and transportation of goods. These sensors and tags collect and analyze process data related to the products, providing meaningful information for operational use and decision-making in the supply chain. Before the spread of COVID-19, the fundamental principles of supply chain management were centered around 'cost minimization' and 'high efficiency.' A smart supply chain overcomes the linear delayed action-reaction processes of traditional supply chains by adopting real-time data for better decision-making based on information, providing greater transparency, and enabling enhanced collaboration across the entire supply chain. Therefore, in this study, a hierarchical model for building a smart supply chain was constructed to systematically derive the importance of key factors that should be strategically considered in the construction of a smart supply chain, based on the major factors identified in previous research. We applied AHP (Analytical Hierarchy Process) techniques to identify urgent improvement areas in smart SCM initiatives. The analysis results showed that the external supply chain integration is the most urgent area to be improved in smart SCM initiatives.

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

Analyzing Key Variables in Network Attack Classification on NSL-KDD Dataset using SHAP (SHAP 기반 NSL-KDD 네트워크 공격 분류의 주요 변수 분석)

  • Sang-duk Lee;Dae-gyu Kim;Chang Soo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.924-935
    • /
    • 2023
  • Purpose: The central aim of this study is to leverage machine learning techniques for the classification of Intrusion Detection System (IDS) data, with a specific focus on identifying the variables responsible for enhancing overall performance. Method: First, we classified 'R2L(Remote to Local)' and 'U2R (User to Root)' attacks in the NSL-KDD dataset, which are difficult to detect due to class imbalance, using seven machine learning models, including Logistic Regression (LR) and K-Nearest Neighbor (KNN). Next, we use the SHapley Additive exPlanation (SHAP) for two classification models that showed high performance, Random Forest (RF) and Light Gradient-Boosting Machine (LGBM), to check the importance of variables that affect classification for each model. Result: In the case of RF, the 'service' variable and in the case of LGBM, the 'dst_host_srv_count' variable were confirmed to be the most important variables. These pivotal variables serve as key factors capable of enhancing performance in the context of classification for each respective model. Conclusion: In conclusion, this paper successfully identifies the optimal models, RF and LGBM, for classifying 'R2L' and 'U2R' attacks, while elucidating the crucial variables associated with each selected model.

Machine Learning Based Hybrid Approach to Detect Intrusion in Cyber Communication

  • Neha Pathak;Bobby Sharma
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.190-194
    • /
    • 2023
  • By looking the importance of communication, data delivery and access in various sectors including governmental, business and individual for any kind of data, it becomes mandatory to identify faults and flaws during cyber communication. To protect personal, governmental and business data from being misused from numerous advanced attacks, there is the need of cyber security. The information security provides massive protection to both the host machine as well as network. The learning methods are used for analyzing as well as preventing various attacks. Machine learning is one of the branch of Artificial Intelligence that plays a potential learning techniques to detect the cyber-attacks. In the proposed methodology, the Decision Tree (DT) which is also a kind of supervised learning model, is combined with the different cross-validation method to determine the accuracy and the execution time to identify the cyber-attacks from a very recent dataset of different network attack activities of network traffic in the UNSW-NB15 dataset. It is a hybrid method in which different types of attributes including Gini Index and Entropy of DT model has been implemented separately to identify the most accurate procedure to detect intrusion with respect to the execution time. The different DT methodologies including DT using Gini Index, DT using train-split method and DT using information entropy along with their respective subdivision such as using K-Fold validation, using Stratified K-Fold validation are implemented.

How Through-Process Optimization (TPO) Assists to Meet Product Quality

  • Klaus Jax;Yuyou Zhai;Wolfgang Oberaigner
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2024
  • This paper introduces Primetals Technologies' Through-Process Optimization (TPO) Services and Through-Process Quality Control (TPQC) System, which integrate domain knowledge, software, and automation expertise to assist steel producers in achieving operational excellence. TPQC collects high-resolution process and product data from the entire production route, providing visualizations and facilitating quality assurance. It also enables the application of artificial intelligence techniques to optimize processes, accelerate steel grade development, and enhance product quality. The main objective of TPO is to grow and digitize operational know-how, increase profitability, and better meet customer needs. The paper describes the contribution of these systems to achieving operational excellence, with a focus on quality assurance. Transparent and traceable production data is used for manual and automatic quality evaluation, resulting in product quality status and guiding the product disposition process. Deviation management is supported by rule-based and AI-based assistants, along with monitoring, alarming, and reporting functions ensuring early recognition of deviations. Embedded root cause proposals and their corrective and compensatory actions facilitate decision support to maintain product quality. Quality indicators and predictive quality models further enhance the efficiency of the quality assurance process. Utilizing the quality assurance software package, TPQC acts as a "one-truth" platform for product quality key players.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

CNN-based Fall Detection Model for Humanoid Robots (CNN 기반의 인간형 로봇의 낙상 판별 모델)

  • Shin-Woo Park;Hyun-Min Joe
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • Humanoid robots, designed to interact in human environments, require stable mobility to ensure safety. When a humanoid robot falls, it causes damage, breakdown, and potential harm to the robot. Therefore, fall detection is critical to preventing the robot from falling. Prevention of falling of a humanoid robot requires an operator controlling a crane. For efficient and safe walking control experiments, a system that can replace a crane operator is needed. To replace such a crane operator, it is essential to detect the falling conditions of humanoid robots. In this study, we propose falling detection methods using Convolution Neural Network (CNN) model. The image data of a humanoid robot are collected from various angles and environments. A large amount of data is collected by dividing video data into frames per second, and data augmentation techniques are used. The effectiveness of the proposed CNN model is verified by the experiments with the humanoid robot MAX-E1.