• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.022 seconds

Research on Intelligent Anomaly Detection System Based on Real-Time Unstructured Object Recognition Technique (실시간 비정형객체 인식 기법 기반 지능형 이상 탐지 시스템에 관한 연구)

  • Lee, Seok Chang;Kim, Young Hyun;Kang, Soo Kyung;Park, Myung Hye
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.546-557
    • /
    • 2022
  • Recently, the demand to interpret image data with artificial intelligence in various fields is rapidly increasing. Object recognition and detection techniques using deep learning are mainly used, and video integration analysis to determine unstructured object recognition is a particularly important problem. In the case of natural disasters or social disasters, there is a limit to the object recognition structure alone because it has an unstructured shape. In this paper, we propose intelligent video integration analysis system that can recognize unstructured objects based on video turning point and object detection. We also introduce a method to apply and evaluate object recognition using virtual augmented images from 2D to 3D through GAN.

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

Implementation of Photovoltaic Panel failure detection system using semantic segmentation (시멘틱세그멘테이션을 활용한 태양광 패널 고장 감지 시스템 구현)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1777-1783
    • /
    • 2021
  • The use of drones is gradually increasing for the efficient maintenance of large-scale renewable energy power generation complexes. For a long time, photovoltaic panels have been photographed with drones to manage panel loss and contamination. Various approaches using artificial intelligence are being tried for efficient maintenance of large-scale photovoltaic complexes. Recently, semantic segmentation-based application techniques have been developed to solve the image classification problem. In this paper, we propose a classification model using semantic segmentation to determine the presence or absence of failures such as arcs, disconnections, and cracks in solar panel images obtained using a drone equipped with a thermal imaging camera. In addition, an efficient classification model was implemented by tuning several factors such as data size and type and loss function customization in U-Net, which shows robust classification performance even with a small dataset.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

Adversarial Machine Learning: A Survey on the Influence Axis

  • Alzahrani, Shahad;Almalki, Taghreed;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.193-203
    • /
    • 2022
  • After the everyday use of systems and applications of artificial intelligence in our world. Consequently, machine learning technologies have become characterized by exceptional capabilities and unique and distinguished performance in many areas. However, these applications and systems are vulnerable to adversaries who can be a reason to confer the wrong classification by introducing distorted samples. Precisely, it has been perceived that adversarial examples designed throughout the training and test phases can include industrious Ruin the performance of the machine learning. This paper provides a comprehensive review of the recent research on adversarial machine learning. It's also worth noting that the paper only examines recent techniques that were released between 2018 and 2021. The diverse systems models have been investigated and discussed regarding the type of attacks, and some possible security suggestions for these attacks to highlight the risks of adversarial machine learning.

Precision nutrition: approach for understanding intra-individual biological variation (정밀영양: 개인 간 대사 다양성을 이해하기 위한 접근)

  • Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In the past few decades, great progress has been made on understanding the interaction between nutrition and health status. But despite this wealth of knowledge, health problems related to nutrition continue to increase. This leads us to postulate that the continuing trend may result from a lack of consideration for intra-individual biological variation on dietary responses. Precision nutrition utilizes personal information such as age, gender, lifestyle, diet intake, environmental exposure, genetic variants, microbiome, and epigenetics to provide better dietary advices and interventions. Recent technological advances in the artificial intelligence, big data analytics, cloud computing, and machine learning, have made it possible to process data on a scale and in ways that were previously impossible. A big data platform is built by collecting numerous parameters such as meal features, medical metadata, lifestyle variation, genome diversity and microbiome composition. Sophisticated techniques based on machine learning algorithm can be used to integrate and interpret multiple factors and provide dietary guidance at a personalized or stratified level. The development of a suitable machine learning algorithm would make it possible to suggest a personalized diet or functional food based on analysis of intra-individual metabolic variation. This novel precision nutrition might become one of the most exciting and promising approaches of improving health conditions, especially in the context of non-communicable disease prevention.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

Trends in Hardware Acceleration Techniques for Fully Homomorphic Encryption Operations (완전동형암호 연산 가속 하드웨어 기술 동향)

  • Park, S.C.;Kim, H.W.;Oh, Y.R.;Na, J.C.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2021
  • As the demand for big data and big data-based artificial intelligence (AI) technology increases, the need for privacy preservations for sensitive information contained in big data and for high-speed encryption-based AI computation systems also increases. Fully homomorphic encryption (FHE) is a representative encryption technology that preserves the privacy of sensitive data. Therefore, FHE technology is being actively investigated primarily because, with FHE, decryption of the encrypted data is not required in the entire data flow. Data can be stored, transmitted, combined, and processed in an encrypted state. Moreover, FHE is based on an NP-hard problem (Lattice problem) that cannot be broken, even by a quantum computer, because of its high computational complexity and difficulty. FHE boasts a high-security level and therefore is receiving considerable attention as next-generation encryption technology. However, despite being able to process computations on encrypted data, the slow computation speed due to the high computational complexity of FHE technology is an obstacle to practical use. To address this problem, hardware technology that accelerates FHE operations is receiving extensive research attention. This article examines research trends associated with developments in hardware technology focused on accelerating the operations of representative FHE schemes. In addition, the detailed structures of hardware that accelerate the FHE operation are described.

Food Security through Smart Agriculture and the Internet of Things

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.33-42
    • /
    • 2022
  • One of the most pressing socioeconomic problems confronting humanity on a worldwide scale is food security, particularly in light of the expanding population and declining land productivity. These causes have increased the number of people in the world who are at risk of starving and have caused the natural ecosystems to degrade at previously unheard-of speeds. Happily, the Internet of Things (IoT) development provides a glimmer of light for those worried about food security through smart agriculture-a development that is particularly relevant to automating food production operations in order to reduce labor expenses. When compared to conventional farming techniques, smart agriculture has the benefit of maximizing resource use through precise chemical input application and regulation of environmental factors like temperature and humidity. Farmers may make data-driven choices about the possibility of insect invasion, natural disasters, anticipated yields, and even prospective market shifts with the use of smart farming tools. The technical foundation of smart agriculture serves as a potential response to worries about food security. It is made up of wireless sensor networks and integrated cloud computing modules inside IoT.