• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.027 seconds

Utilization of Artificial Intelligence Techniques for Photovoltaic Applications

  • Juan, Ronnie O. Serfa;Kim, Jeha
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.85-96
    • /
    • 2019
  • Renewable energy is emerging as a reliable alternative source of energy, it is much safer, cleaner than conventional sources and has contributed significantly in this sector. However, there are still some challenges that needed to address this evolving technology. Artificial Intelligence (A. I.) can assess the past, optimize the present, and forecast the future. Therefore, A. I. will resolve most of these problems. Artificial intelligence is complex in nature, but it reduces error and aims to reach a greater degree of precision which make renewables smarter. This paper provides an overview of frequently used A. I. methods in solar energy applications. A sample algorithm is also provided for literature purposes and knowledge transfer.

Conceptual Design of the Artificial Intelligence based Tactical Command Decision Support System using the Functional Analysis Method (기능분석법을 이용한 인공지능 기반 전술제대 지휘결심지원체계의 개념설계)

  • Choi, Keun Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.650-658
    • /
    • 2020
  • The research of the AI-based command decision support system was insufficient both quantitatively and qualitatively. In particular, in Korea, there was no research on concrete concept design at the current concept research level. This paper proposed the conceptual design of a tactical echelon command decision support system based on artificial intelligence(AI) according to the current army's doctrine of the operation process. The suggested conceptual design clarified the problem and proposed an appropriate process for design, and applied the function analysis method among rational techniques that enable conceptual design systematically.

A Study on the Analysis Method of Artificial Intelligence for Real-Time Data Prediction. (실시간 데이터 예측을 위한 인공지능 분석 방법 연구)

  • Hong, Phil-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.547-549
    • /
    • 2021
  • In Artificial Intelligence analysis, the process of creating a model and verifying it is a task that requires computational processing time because it is Batch Processing performed with already generated data. We need to model, validate, and predict real-time data, such as stocks and defense information, with data generated directly in front of us. As a solution to this, we solve it by applying techniques to segment the data required for artificial intelligence modeling tasks in order of time processing and distribute the data across multiple processes.

  • PDF

Emotional-Controllable Talking Face Generation on Real-Time System

  • Van-Thien Phan;Hyung-Jeong Yang;Seung-Won Kim;Ji-Eun Shin;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.523-526
    • /
    • 2024
  • Recent progress in audio-driven talking face generation has focused on achieving more realistic and emotionally expressive lip movements, enhancing the quality of virtual avatars and animated characters for applications in entertainment, education, healthcare, and more. Despite these advances, challenges remain in creating natural and emotionally nuanced lip synchronization efficiently and accurately. To address these issues, we introduce a novel method for audio-driven lip-sync that offers precise control over emotional expressions, outperforming current techniques. Our method utilizes Conditional Deep Variational Autoencoder to produce lifelike lip movements that align seamlessly with audio inputs while dynamically adjusting for various emotional states. Experimental results highlight the advantages of our approach, showing significant improvements in emotional accuracy and the overall quality of the generated facial animations, video sequences on the Crema-D dataset [1].

Artificial Intelligence Techniques in Game Contents

  • Ko Sang-Su;Chae Song-Hwa;Nam Byung-Woo;Kim Won-Il
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.18-21
    • /
    • 2006
  • Nowadays, many people enjoy playing games in computer. In this kind of game, people often meet NPC (Non Player Character). It is the virtual character in simplified form of real player and exits in most of current computer games. Various NPCs add the reality and atmosphere of the game as well as help players. There are several techniques to embody NPC, but developers generally use AI technique. This paper discusses some artificial intelligence techniques used in game contents. Especially this paper focuses on the AI techniques used in computer games in terms of the two main approaches, symbolic approach and sub-symbolic approach.

  • PDF

Applying Artificial Intelligence Based on Fuzzy Logic for Improved Cognitive Wireless Data Transmission: Models and Techniques

  • Ahmad AbdulQadir AlRababah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, the development of wireless network technologies has been advancing in several directions: increasing data transmission speed, enhancing user mobility, expanding the range of services offered, improving the utilization of the radio frequency spectrum, and enhancing the intelligence of network and subscriber equipment. In this research, a series of contradictions has emerged in the field of wireless network technologies, with the most acute being the contradiction between the growing demand for wireless communication services (on operational frequencies) and natural limitations of frequency resources, in addition to the contradiction between the expansions of the spectrum of services offered by wireless networks, increased quality requirements, and the use of traditional (outdated) management technologies. One effective method for resolving these contradictions is the application of artificial intelligence elements in wireless telecommunication systems. Thus, the development of technologies for building intelligent (cognitive) radio and cognitive wireless networks is a technological imperative of our time. The functions of artificial intelligence in prospective wireless systems and networks can be implemented in various ways. One of the modern approaches to implementing artificial intelligence functions in cognitive wireless network systems is the application of fuzzy logic and fuzzy processors. In this regard, the work focused on exploring the application of fuzzy logic in prospective cognitive wireless systems is considered relevant.

Applications of artificial intelligence and data mining techniques in soil modeling

  • Javadi, A.A.;Rezania, M.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.53-74
    • /
    • 2009
  • In recent years, several computer-aided pattern recognition and data mining techniques have been developed for modeling of soil behavior. The main idea behind a pattern recognition system is that it learns adaptively from experience and is able to provide predictions for new cases. Artificial neural networks are the most widely used pattern recognition methods that have been utilized to model soil behavior. Recently, the authors have pioneered the application of genetic programming (GP) and evolutionary polynomial regression (EPR) techniques for modeling of soils and a number of other geotechnical applications. The paper reviews applications of pattern recognition and data mining systems in geotechnical engineering with particular reference to constitutive modeling of soils. It covers applications of artificial neural network, genetic programming and evolutionary programming approaches for soil modeling. It is suggested that these systems could be developed as efficient tools for modeling of soils and analysis of geotechnical engineering problems, especially for cases where the behavior is too complex and conventional models are unable to effectively describe various aspects of the behavior. It is also recognized that these techniques are complementary to conventional soil models rather than a substitute to them.

Artificial Intelligence based Tumor detection System using Computational Pathology

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2019
  • Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

A Methodology for Bankruptcy Prediction in Imbalanced Datasets using eXplainable AI (데이터 불균형을 고려한 설명 가능한 인공지능 기반 기업부도예측 방법론 연구)

  • Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.65-76
    • /
    • 2022
  • Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.