• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.023 seconds

Identifying Issue Changes of AI Chatbot 'Iruda' Case and Its Implications (AI 챗봇 '이루다' 논란의 이슈 변화와 시사점)

  • Choi, S.S.;Hong, A.R.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • The controversy over Artificial Intelligence (AI) chatbot "Iruda," which suspended its service 20 days after its launch, can be seen as the first case to inform the public of AI ethics issues. Based on this context, this study examines the controversy and social semantic formation of "Iruda" service cases using news topic modeling techniques. 963-news articles were used for the analysis, and the event's duration was analyzed based on major events, such as service start, controversy, and suspension, to understand the progress. From the analyses results, we obtain major keywords and a total of 16 topics (5, 4, 7) from the period. Finally, the implications for the development and utilization of AI services obtained through this controversy were discussed based on the analysis results.

Research Trends on Inverse Reinforcement Learning (역강화학습 기술 동향)

  • Lee, S.K.;Kim, D.W.;Jang, S.H.;Yang, S.I.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.100-107
    • /
    • 2019
  • Recently, reinforcement learning (RL) has expanded from the research phase of the virtual simulation environment to a wide range of applications, such as autonomous driving, natural language processing, recommendation systems, and disease diagnosis. However, RL is less likely to be used in these complex real-world environments. In contrast, inverse reinforcement learning (IRL) can obtain optimal policies in various situations; furthermore, it can use expert demonstration data to achieve its target task. In particular, IRL is expected to be a key technology for artificial general intelligence research that can successfully perform human intellectual tasks. In this report, we briefly summarize various IRL techniques and research directions.

MATE: Memory- and Retraining-Free Error Correction for Convolutional Neural Network Weights

  • Jang, Myeungjae;Hong, Jeongkyu
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Convolutional neural networks (CNNs) are one of the most frequently used artificial intelligence techniques. Among CNN-based applications, small and timing-sensitive applications have emerged, which must be reliable to prevent severe accidents. However, as the small and timing-sensitive systems do not have sufficient system resources, they do not possess proper error protection schemes. In this paper, we propose MATE, which is a low-cost CNN weight error correction technique. Based on the observation that all mantissa bits are not closely related to the accuracy, MATE replaces some mantissa bits in the weight with error correction codes. Therefore, MATE can provide high data protection without requiring additional memory space or modifying the memory architecture. The experimental results demonstrate that MATE retains nearly the same accuracy as the ideal error-free case on erroneous DRAM and has approximately 60% accuracy, even with extremely high bit error rates.

Toward Sentiment Analysis Based on Deep Learning with Keyword Detection in a Financial Report (재무 보고서의 키워드 검출 기반 딥러닝 감성분석 기법)

  • Jo, Dongsik;Kim, Daewhan;Shin, Yoojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.670-673
    • /
    • 2020
  • Recent advances in artificial intelligence have allowed for easier sentiment analysis (e.g. positive or negative forecast) of documents such as a finance reports. In this paper, we investigate a method to apply text mining techniques to extract in the financial report using deep learning, and propose an accounting model for the effects of sentiment values in financial information. For sentiment analysis with keyword detection in the financial report, we suggest the input layer with extracted keywords, hidden layers by learned weights, and the output layer in terms of sentiment scores. Our approaches can help more effective strategy for potential investors as a professional guideline using sentiment values.

Innovative Solutions for Design and Fabrication of Deep Learning Based Soft Sensor

  • Khdhir, Radhia;Belghith, Aymen
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.131-138
    • /
    • 2022
  • Soft sensors are used to anticipate complicated model parameters using data from classifiers that are comparatively easy to gather. The goal of this study is to use artificial intelligence techniques to design and build soft sensors. The combination of a Long Short-Term Memory (LSTM) network and Grey Wolf Optimization (GWO) is used to create a unique soft sensor. LSTM is developed to tackle linear model with strong nonlinearity and unpredictability of manufacturing applications in the learning approach. GWO is used to accomplish input optimization technique for LSTM in order to reduce the model's inappropriate complication. The newly designed soft sensor originally brought LSTM's superior dynamic modeling with GWO's exact variable selection. The performance of our proposal is demonstrated using simulations on real-world datasets.

Systematic Review on Chatbot Techniques and Applications

  • Park, Dong-Min;Jeong, Seong-Soo;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.26-47
    • /
    • 2022
  • Chatbots were an important research subject in the past. A chatbot is a computer program or an artificial intelligence program that participates in a conversation via auditory or textual methods. As the research on chatbots progressed, some important issues regarding them changed over time. Therefore, it is necessary to review the technology with a focus on recent advancements and core research technologies. In this paper, we introduce five different chatbot technologies: natural language processing, pattern matching, semantic web, data mining, and context-aware computer. We also introduce the latest technology for the chatbot researchers to recognize the present situation and channelize it in the right direction.

Extension of Minimal Codes for Application to Distributed Learning (분산 학습으로의 적용을 위한 극소 부호의 확장 기법)

  • Jo, Dongsik;Chung, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.479-482
    • /
    • 2022
  • Recently, various artificial intelligence technologies are being applied to smart factory, finance, healthcare, and so on. When handling data requiring protection of privacy, distributed learning techniques are used. For distribution of information with privacy protection, encoding private information is required. Minimal codes has been used in such a secret-sharing scheme. In this paper, we explain the relationship between the characteristics of the minimal codes for application in distributed systems. We briefly deals with previously known construction methods, and presents extension methods for minimal codes. The new codes provide flexibility in distribution of private information. Furthermore, we discuss application scenarios for the extended codes.

Transforming Text into Video: A Proposed Methodology for Video Production Using the VQGAN-CLIP Image Generative AI Model

  • SukChang Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.225-230
    • /
    • 2023
  • With the development of AI technology, there is a growing discussion about Text-to-Image Generative AI. We presented a Generative AI video production method and delineated a methodology for the production of personalized AI-generated videos with the objective of broadening the landscape of the video domain. And we meticulously examined the procedural steps involved in AI-driven video production and directly implemented a video creation approach utilizing the VQGAN-CLIP model. The outcomes produced by the VQGAN-CLIP model exhibited a relatively moderate resolution and frame rate, and predominantly manifested as abstract images. Such characteristics indicated potential applicability in OTT-based video content or the realm of visual arts. It is anticipated that AI-driven video production techniques will see heightened utilization in forthcoming endeavors.

A Review of Structural Testing Methods for ASIC based AI Accelerators

  • Umair, Saeed;Irfan Ali, Tunio;Majid, Hussain;Fayaz Ahmed, Memon;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • Implementing conventional DFT solution for arrays of DNN accelerators having large number of processing elements (PEs), without considering architectural characteristics of PEs may incur overwhelming test overheads. Recent DFT based techniques have utilized the homogeneity and dataflow of arrays at PE-level and Core-level for obtaining reduction in; test pattern volume, test time, test power and ATPG runtime. This paper reviews these contemporary test solutions for ASIC based DNN accelerators. Mainly, the proposed test architectures, pattern application method with their objectives are reviewed. It is observed that exploitation of architectural characteristic such as homogeneity and dataflow of PEs/ arrays results in reduced test overheads.

Introducing the Concept of Intelligent Financial Inclusion

  • Anam Yasir;Alia Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.103-110
    • /
    • 2023
  • Financial inclusion is the safe and timely access of formal financial services to people at affordable costs. Various barriers of legacy financial system hinder the involvement of all segments of populations in the financial sector. The journey from financial exclusion to financial inclusion has to be achieved with the implementation of technological breakthroughs. Covid-19 has also raised the need for technology in all sectors of the economy. This research paper introduces the concept of intelligent financial inclusion which is the provision of financial services to people with the help of intelligent systems. This intelligent system will take the concepts from the human mind, cognitive sciences, and artificial intelligence tools and techniques. For achieving the optimal level of financial inclusion, economies must shift their financial sector from traditional means to intelligent financial systems. In this way, intelligent financial inclusion will achieve the target of involving all people in the financial sector.