• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.026 seconds

AVK based Cryptosystem and Recent Directions Towards Cryptanalysis

  • Prajapat, Shaligram;Sharma, Ashok;Thakur, Ramjeevan Singh
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.97-110
    • /
    • 2016
  • Cryptanalysis is very important step for auditing and checking strength of any cryptosystem. Some of these cryptosystem ensures confidentiality and security of large information exchange from source to destination using symmetric key cryptography. The cryptanalyst investigates the strengths and identifies weakness key as well as enciphering algorithm. With increase in key size the time and effort required to guess the correct key increases so trend is increase key size from 8, 16, 24, 32, 56, 64, 128 and 256 bits to strengthen the cryptosystem and thus algorithm continues without compromise on the cost of time and computation. Automatic Variable Key (AVK) approach is an alternative to the approach of fixing up key size and adding security level with key variability adds new dimension in the development of secure cryptosystem. Likewise, whenever any new cryptographic method is invented to replace per-existing vulnerable cryptographic method, its deep analysis from all perspectives (Hacker / Cryptanalyst as well as User) is desirable and proper study and evaluation of its performance is must. This work investigates AVK based cryptic techniques, in future to exploit benefits of advances in computational methods like ANN, GA, SI etc. These techniques for cryptanalysis are changing drastically to reduce cryptographic complexity. In this paper a detailed survey and direction of development work has been conducted. The work compares these new methods with state of art approaches and presents future scope and direction from the cryptic mining perspectives.

Approaches to Applying Social Network Analysis to the Army's Information Sharing System: A Case Study (육군 정보공유체계에 사회관계망 분석을 적용하기 위한방안: 사례 연구)

  • GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.597-603
    • /
    • 2023
  • The paradigm of military operations has evolved from platform-centric warfare to network-centric warfare and further to information-centric warfare, driven by advancements in information technology. In recent years, with the development of cutting-edge technologies such as big data, artificial intelligence, and the Internet of Things (IoT), military operations are transitioning towards knowledge-centric warfare (KCW), based on artificial intelligence. Consequently, the military places significant emphasis on integrating advanced information and communication technologies (ICT) to establish reliable C4I (Command, Control, Communication, Computer, Intelligence) systems. This research emphasizes the need to apply data mining techniques to analyze and evaluate various aspects of C4I systems, including enhancing combat capabilities, optimizing utilization in network-based environments, efficiently distributing information flow, facilitating smooth communication, and effectively implementing knowledge sharing. Data mining serves as a fundamental technology in modern big data analysis, and this study utilizes it to analyze real-world cases and propose practical strategies to maximize the efficiency of military command and control systems. The research outcomes are expected to provide valuable insights into the performance of C4I systems and reinforce knowledge-centric warfare in contemporary military operations.

Predicting strength and strain of circular concrete cross-sections confined with FRP under axial compression by utilizing artificial neural networks

  • Yaman S. S. Al-Kamaki;Abdulhameed A. Yaseen;Mezgeen S. Ahmed;Razaq Ferhadi;Mand K. Askar
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.93-122
    • /
    • 2024
  • One well-known reason for using Fiber Reinforced Polymer (FRP) composites is to improve concrete strength and strain capacity via external confinement. Hence, various studies have been undertaken to offer a good illustration of the response of FRP-wrapped concrete for practical design intents. However, in such studies, the strength and strain of the confined concrete were predicted using regression analysis based on a limited number of test data. This study presents an approach based on artificial neural networks (ANNs) to develop models to predict the strength and strain at maximum stress enhancement of circular concrete cross-sections confined with different FRP types (Carbone, Glass, Aramid). To achieve this goal, a large test database comprising 493 axial compression experiments on FRP-confined concrete samples was compiled based on an extensive review of the published literature and used to validate the predicted artificial intelligence techniques. The ANN approach is currently thought to be the preferred learning technique because of its strong prediction effectiveness, interpretability, adaptability, and generalization. The accuracy of the developed ANN model for predicting the behavior of FRP-confined concrete is commensurate with the experimental database compiled from published literature. Statistical measures values, which indicate a better fit, were observed in all of the ANN models. Therefore, compared to existing models, it should be highlighted that the newly developed models based on FRP type are remarkably accurate.

Application Trends of Deep Learning Artificial Intelligence in Autonomous Things (자율사물을 위한 심층학습 인공지능 기술 적용 동향)

  • Cho, J.M.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.1-11
    • /
    • 2020
  • Recently, autonomous things, which are pieces of equipment or devices that grasp the context of circumstances on their own and perform actions appropriate for the situation in the surrounding environment, are attracting much research interest. This is because autonomous things are expected to be able to interact with humans more naturally, supersede humans in many tasks, and further solve problems by themselves by collaborating with each other without human intervention. This prospect leans heavily on AI as deep learning has delivered astonishing breakthroughs recently and broadened its range of applications. This paper surveys application trends in deep learning-based AI techniques for autonomous things, especially autonomous driving vehicles, because they present a wide range of problems involving perception, decision, and actions that are very common in other autonomous things.

Enhancing Security Gaps in Smart Grid Communication

  • Lee, Sang-Hyun;Jeong, Heon;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.7-10
    • /
    • 2014
  • In order to develop smart grid communications infrastructure, a high level of interconnectivity and reliability among its nodes is required. Sensors, advanced metering devices, electrical appliances, and monitoring devices, just to mention a few, will be highly interconnected allowing for the seamless flow of data. Reliability and security in this flow of data between nodes is crucial due to the low latency and cyber-attacks resilience requirements of the Smart Grid. In particular, Artificial Intelligence techniques such as Fuzzy Logic, Bayesian Inference, Neural Networks, and other methods can be employed to enhance the security gaps in conventional IDSs. A distributed FPGA-based network with adaptive and cooperative capabilities can be used to study several security and communication aspects of the smart grid infrastructure both from the attackers and defensive point of view. In this paper, the vital issue of security in the smart grid is discussed, along with a possible approach to achieve this by employing FPGA based Radial Basis Function (RBF) network intrusion.

Conversational Agent as Web Virtual Representative using Artificial Intelligence Techniques (인공지능 기법을 이용한 웹 가상 도우미로서의 대화형 에이전트)

  • Kima, Kyoung-Min;Limb, Sung-Soo;Chob, Sung-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.201-207
    • /
    • 2003
  • 인터넷의 사용이 보편화됨에 따라 인터넷을 통한 정보 제공 서비스가 확대되고 있다. 이에 따라 빠르게 변화하는 사용자의 요구를 만족시킴과 동시에 편리하고 유용한 서비스를 제공하기 위하여 사용자와 자연스럽게 의사소통할 수 있는 대화형 에이전트의 연구가 활발히 진행되고 있다. 더불어 시스템의 효율적인 설계 또한 중요한 문제가 아닐 수 없다. 본 논문에서는 패턴매칭 기법과 베이지안 네트워크를 이용해 사용자 질의에 대한 적절한 답변을 생성하고, 스크립트 인터페이스를 통한 자동 스크립트 설계로 보다 효율적인 시스템 구축 방안을 제안해 보고자 한다. 실제 의류 사이트를 위한 안내 도우미 에이전트를 구현해 봄으로써 그 기능성을 평가해 본다.

  • PDF

Development of MAP Network Performance Manger Using Artificial Intelligence Techniques (인공지능에 의한 MAP 네트워크의 성능관리기 개발)

  • Son, Joon-Woo;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.46-55
    • /
    • 1997
  • This paper presents the development of intelligent performance management of computer communication networks for larger-scale integrated systems and the demonstration of its efficacy using computer simula- tion. The innermost core of the performance management is based on fuzzy set theory. This fuzzy perfor- mance manager has learning ability by using principles of neuro-fuzzy model, neuralnetwork, genetic algo- rithm(GA). Two types of performance managers are described in this paper. One is the Neuro-Fuzzy Per- formance Manager(NFPM) of which learning ability is based on the conventional gradient method, and the other is GA-based Neuro-Fuzzy Performance Manager(GNFPM)with its learning ability based on a genetic algorithm. These performance managers have been evaluated via discrete event simulation of a computer network.

  • PDF

Performance Evaluation of Multi-sensors Signals and Classifiers for Faults Diagnosis of Induction Motor

  • Niu, Gang;Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.411-416
    • /
    • 2006
  • Fault detection and diagnosis is the most important technology in condition-based maintenance(CBM) system that usually begins from collecting signatures of running machines using multiple sensors for subsequent accurate analysis. With the quick development in industry, there is an increasing requirement of selecting special sensors that are cheap, robust, and easy-installation. This paper experimentally investigated performances of four types of sensors used in induction motors faults diagnosis, which are vibration, current, voltage and flux. In addition, diagnostic effects of five popular classifiers also were evaluated. First, the raw signals from the four types of sensors are collected at the same time. Then the features are calculated from collected signals. Next, these features are classified through five classifiers using artificial intelligence techniques. Finally, conclusions are given based on the experiment results.

  • PDF

A Study on Realtime Intrusion Detection System (실시간 침입탐지 시스템에 관한 연구)

  • Kim, Byoung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 2005
  • Applying artificial intelligence, machine learning and data mining techniques to intrusion detection system are increasing. But most of researches are focused on improving the performance of classifier. These classifiers are performed by batch way and it is not proper method for realtime intrusion detection system. We propose an incremental feature extraction and classification technique for realtime intrusion detection system. Applying proposed system to KDD CUP 99 data, experimental result shows that it has similar capability compared to batch way intrusion detection system.

Type-2 Fuzzy Logic Optimum PV/inverter Sizing Ratio for Grid-connected PV Systems: Application to Selected Algerian Locations

  • Makhloufi, S.;Abdessemed, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.731-741
    • /
    • 2011
  • Conventional methodologies (empirical, analytical, numerical, hybrid, etc.) for sizing photovoltaic (PV) systems cannot be used when the relevant meteorological data are not available. To overcome this situation, modern methods based on artificial intelligence techniques have been developed for sizing the PV systems. In the present study, the optimum PV/inverter sizing ratio for grid-connected PV systems with orientation due south and inclination angles of $45^{\circ}$ and $60^{\circ}$ in selected Algerian locations was determined in terms of total system output using type-2 fuzzy logic. Because measured data for the locations chosen were not available, a year of synthetic hourly meteorological data for each location generated by the PVSYST software was used in the simulation.