• Title/Summary/Keyword: artificial intelligence techniques

Search Result 689, Processing Time 0.024 seconds

A Study on Effective Interpretation of AI Model based on Reference (Reference 기반 AI 모델의 효과적인 해석에 관한 연구)

  • Hyun-woo Lee;Tae-hyun Han;Yeong-ji Park;Tae-jin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.411-425
    • /
    • 2023
  • Today, AI (Artificial Intelligence) technology is widely used in various fields, performing classification and regression tasks according to the purpose of use, and research is also actively progressing. Especially in the field of security, unexpected threats need to be detected, and unsupervised learning-based anomaly detection techniques that can detect threats without adding known threat information to the model training process are promising methods. However, most of the preceding studies that provide interpretability for AI judgments are designed for supervised learning, so it is difficult to apply them to unsupervised learning models with fundamentally different learning methods. In addition, previously researched vision-centered AI mechanism interpretation studies are not suitable for application to the security field that is not expressed in images. Therefore, In this paper, we use a technique that provides interpretability for detected anomalies by searching for and comparing optimization references, which are the source of intrusion attacks. In this paper, based on reference, we propose additional logic to search for data closest to real data. Based on real data, it aims to provide a more intuitive interpretation of anomalies and to promote effective use of an anomaly detection model in the security field.

Training Dataset Generation through Generative AI for Multi-Modal Safety Monitoring in Construction

  • Insoo Jeong;Junghoon Kim;Seungmo Lim;Jeongbin Hwang;Seokho Chi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.455-462
    • /
    • 2024
  • In the construction industry, known for its dynamic and hazardous environments, there exists a crucial demand for effective safety incident prevention. Traditional approaches to monitoring on-site safety, despite their importance, suffer from being laborious and heavily reliant on subjective, paper-based reports, which results in inefficiencies and fragmented data. Additionally, the incorporation of computer vision technologies for automated safety monitoring encounters a significant obstacle due to the lack of suitable training datasets. This challenge is due to the rare availability of safety accident images or videos and concerns over security and privacy violations. Consequently, this paper explores an innovative method to address the shortage of safety-related datasets in the construction sector by employing generative artificial intelligence (AI), specifically focusing on the Stable Diffusion model. Utilizing real-world construction accident scenarios, this method aims to generate photorealistic images to enrich training datasets for safety surveillance applications using computer vision. By systematically generating accident prompts, employing static prompts in empirical experiments, and compiling datasets with Stable Diffusion, this research bypasses the constraints of conventional data collection techniques in construction safety. The diversity and realism of the produced images hold considerable promise for tasks such as object detection and action recognition, thus improving safety measures. This study proposes future avenues for broadening scenario coverage, refining the prompt generation process, and merging artificial datasets with machine learning models for superior safety monitoring.

Detection of Incipient Faults in Induction Motors using FIS, ANN and ANFIS Techniques

  • Ballal, Makarand S.;Suryawanshi, Hiralal M.;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2008
  • The task performed by induction motors grows increasingly complex in modern industry and hence improvements are sought in the field of fault diagnosis. It is essential to diagnose faults at their very inception, as unscheduled machine down time can upset critical dead lines and cause heavy financial losses. Artificial intelligence (AI) techniques have proved their ability in detection of incipient faults in electrical machines. This paper presents an application of AI techniques for the detection of inter-turn insulation and bearing wear faults in single-phase induction motors. The single-phase induction motor is considered a proto type model to create inter-turn insulation and bearing wear faults. The experimental data for motor intake current, rotor speed, stator winding temperature, bearing temperature and noise of the motor under running condition was generated in the laboratory. The different types of fault detectors were developed based upon three different AI techniques. The input parameters for these detectors were varied from two to five sequentially. The comparisons were made and the best fault detector was determined.

Prediction of compressive strength of concrete modified with fly ash: Applications of neuro-swarm and neuro-imperialism models

  • Mohammed, Ahmed;Kurda, Rawaz;Armaghani, Danial Jahed;Hasanipanah, Mahdi
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.489-512
    • /
    • 2021
  • In this study, two powerful techniques, namely particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were selected and combined with a pre-developed ANN model aiming at improving its performance prediction of the compressive strength of concrete modified with fly ash. To achieve this study's aims, a comprehensive database with 379 data samples was collected from the available literature. The output of the database is the compressive strength (CS) of concrete samples, which are influenced by 9 parameters as model inputs, namely those related to mix composition. The modeling steps related to ICA-ANN (or neuro-imperialism) and PSO-ANN (or neuro-swarm) were conducted through the use of several parametric studies to design the most influential parameters on these hybrid models. A comparison of the CS values predicted by hybrid intelligence techniques with the experimental CS values confirmed that the neuro-swarm model could provide a higher degree of accuracy than another proposed hybrid model (i.e., neuro-imperialism). The train and test correlation coefficient values of (0.9042 and 0.9137) and (0.8383 and 0.8777) for neuro-swarm and neuro-imperialism models, respectively revealed that although both techniques are capable enough in prediction tasks, the developed neuro-swarm model can be considered as a better alternative technique in mapping the concrete strength behavior.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Analyzation and Improvements of the Revised 2015 Education Curriculum for Information Science of Highschool: Focusing on Information Ethics and Multimedia (고등학교 정보과학의 2015 개정 교육과정에 대한 분석 및 개선 방안: 정보윤리와 멀티미디어를 중심으로)

  • Jeong, Seungdo;Cho, Jungwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.208-214
    • /
    • 2016
  • With the rising interest in intelligence information technology built on artificial intelligence and big data technologies, all countries in the world including advanced countries such as the United States, the United Kingdom, Japan and so on, have launched national investment programs in preparation for the fourth industrial revolution centered on the software industry. Our country belatedly recognized the importance of software and initiated the 2015 revised educational curriculum for elementary and secondary informatics subjects. This paper thoroughly analyzes the new educational curriculum for information science in high schools and, then, suggests improvements in the areas of information ethics and multimedia. The analysis of the information science curriculum is applied to over twenty science high schools and schools for gifted children, which are expected to play a leading role in scientific research in our country. In the future artificial intelligence era, in which our dependence on information technology will be further increased, information ethics education for talented students who will play the leading role in making and utilizing artificial intelligence systems should be strongly emphasized, and the focus of their education should be different from that of the existing system. Also, it is necessary that multimedia education centered on digital principles and compression techniques for images, sound, videos, etc., which are commonly used in real life, should be included in the 2015 revised educational curriculum. In this way, the goal of the 2015 revised educational curriculum can be achieved, which is to encourage innovation and the efficient resolution of problems in real life and diverse academic fields based on the fundamental concepts, principles and technology of computer science.

Gait-Based Gender Classification Using a Correlation-Based Feature Selection Technique

  • Beom Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.55-66
    • /
    • 2024
  • Gender classification techniques have received a lot of attention from researchers because they can be used in various fields such as forensics, surveillance systems, and demographic studies. As previous studies have shown that there are distinctive features between male and female gait, various techniques have been proposed to classify gender from three dimensional(3-D) gait data. However, some of the gait features extracted from 3-D gait data using existing techniques are similar or redundant to each other or do not help in gender classification. In this study, we propose a method to select features that are useful for gender classification using a correlation-based feature selection technique. To demonstrate the effectiveness of the proposed feature selection technique, we compare the performance of gender classification models before and after applying the proposed feature selection technique using a 3-D gait dataset available on the Internet. Eight machine learning algorithms applicable to binary classification problems were utilized in the experiments. The experimental results show that the proposed feature selection technique can reduce the number of features by 22, from 82 to 60, while maintaining the gender classification performance.

An Application of Artificial Intelligence System for Accuracy Improvement in Classification of Remotely Sensed Images (원격탐사 영상의 분류정확도 향상을 위한 인공지능형 시스템의 적용)

  • 양인태;한성만;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.