Korea has relatively less crime than other countries. However, the crime rate is steadily increasing. Many people think the crime rate is decreasing, but the crime arrest rate has increased. The goal is to check the relationship between CCTV and the crime rate as a way to lower the crime rate, and to identify the correlation between areas without CCTV and areas without CCTV. If you see a crime that can happen at any time, I think you should use a random forest algorithm. We also plan to use machine learning random forest algorithms to reduce the risk of overfitting, reduce the required training time, and verify high-level accuracy. The goal is to identify the relationship between CCTV and crime occurrence by creating a crime prevention algorithm using machine learning random forest techniques. Assuming that no crime occurs without CCTV, it compares the crime rate between the areas where the most crimes occur and the areas where there are no crimes, and predicts areas where there are many crimes. The impact of CCTV on crime prevention and arrest can be interpreted as a comprehensive effect in part, and the purpose isto identify areas and frequency of frequent crimes by comparing the time and time without CCTV.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.58-63
/
2022
Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.3
/
pp.69-74
/
2022
SNN (Spiking Neural Network) operating in neuromorphic architecture was created by mimicking human neural networks. Neuromorphic computing based on neuromorphic architecture requires relatively lower power than typical deep learning techniques based on GPUs. For this reason, research to support various artificial intelligence models using neuromorphic architecture is actively taking place. This paper conducted a performance analysis of the speech recognition model based on neuromorphic architecture according to the speech data preprocessing technique. As a result of the experiment, it showed up to 84% of speech recognition accuracy performance when preprocessing speech data using the Fourier transform. Therefore, it was confirmed that the speech recognition service based on the neuromorphic architecture can be effectively utilized.
Identifying and searching for characters appearing in scenes during multimedia video editing is an arduous and time-consuming process. Applying artificial intelligence to labor-intensive media editing tasks can greatly reduce media production time, improving the creative process efficiency. In this paper, a method is proposed which combines existing artificial intelligence based techniques to automate character recognition and search tasks for video editing. Object detection, face detection, and pose estimation are used for character localization and face recognition and color space analysis are used to extract unique representation information.
With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.131-131
/
2022
기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.
Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
Advances in nano research
/
v.14
no.2
/
pp.155-164
/
2023
Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.
In recent times, an exponential increase in Internet traffic has been observed as a result of advancing development of the Internet of Things, mobile networks with sensors, and communication functions within various devices. Further, the COVID-19 pandemic has inevitably led to an explosion of social network traffic. Within this context, considerable attention has been drawn to research on network traffic analysis based on machine learning. In this paper, we design and develop a new machine learning framework for network traffic analysis whereby normal and abnormal traffic is distinguished from one another. To achieve this, we combine together well-known machine learning algorithms and network traffic analysis techniques. Using one of the most widely used datasets KDD CUP'99 in the Weka and Apache Spark environments, we compare and investigate results obtained from time series type analysis of various aspects including malicious codes, feature extraction, data formalization, network traffic measurement tool implementation. Experimental analysis showed that while both the logistic regression and the support vector machine algorithm were excellent for performance evaluation, among these, the logistic regression algorithm performs better. The quantitative analysis results of our proposed machine learning framework show that this approach is reliable and practical, and the performance of the proposed system and another paper is compared and analyzed. In addition, we determined that the framework developed in the Apache Spark environment exhibits a much faster processing speed in the Spark environment than in Weka as there are more datasets used to create and classify machine learning models.
Tourism and hospitality have encountered significant changes in recent years as a result of the rapid development of information technology (IT). Customers now expect more expedient services and customized travel experiences, which has intensified competition among service providers. To meet these demands, businesses have adopted sophisticated IT applications such as ChatGPT, which enables real-time interaction with consumers and provides recommendations based on their preferences. This paper focuses on the AI support-prompt middleware system, which functions as a mediator between generative AI and human users, and discusses two operational rules associated with it. The first rule is the Information Processing Rule, which requires the middleware system to determine appropriate responses based on the context of the conversation using techniques for natural language processing. The second rule is the Information Presentation Rule, which requires the middleware system to choose an appropriate language style and conversational attitude based on the gravity of the topic or the conversational context. These rules are essential for guaranteeing that the middleware system can fathom user intent and respond appropriately in various conversational contexts. This study contributes to the planning and analysis of service design by deriving design rules for middleware systems to incorporate artificial intelligence into tourism services. By comprehending the operation of AI support-prompt middleware systems, service providers can design more effective and efficient AI-driven tourism services, thereby improving the customer experience and obtaining a market advantage.
Purpose: The aim of this study was to evaluate the feasibility of deep learning techniques to classify the morphology and severity of peri-implantitis bone defects based on periapical radiographs. Materials and Methods: Based on a pre-trained and fine-tuned ResNet-50 deep learning algorithm, the morphology and severity of peri-implantitis bone defects on periapical radiographs were classified into six groups (class I/II and slight/moderate/severe). Accuracy, precision, recall, and F1 scores were calculated to measure accuracy. Result: A total of 971 dental images were included in this study. Deep-learning-based classification achieved an accuracy of 86.0% with precision, recall, and F1 score values of 84.45%, 81.22%, and 82.80%, respectively. Class II and moderate groups had the highest F1 scores (92.23%), whereas class I and severe groups had the lowest F1 scores (69.33%). Conclusion: The artificial intelligence-based deep learning technique is promising for classifying the morphology and severity of peri-implantitis. However, further studies are required to validate their feasibility in clinical practice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.