• 제목/요약/키워드: artificial intelligence spreads

검색결과 10건 처리시간 0.018초

기업의 인공지능 기술 도입에 영향을 미치는 요인 분석: 국내 기업 데이터를 이용한 실증연구 (Determinants of artificial intelligence adoption in firms: Evidence from Korean firm-level data)

  • 봉강호
    • 정보화정책
    • /
    • 제31권3호
    • /
    • pp.34-47
    • /
    • 2024
  • 디지털 전환이 급속도로 확산되고 있는 가운데, 인공지능(AI) 기술은 혁신과 생산성 향상을 견인할 핵심 동력으로 인식되고 있다. 그러나 현재 기업의 AI 도입에 영향을 미치는 요인에 대한 이해와 실증적 연구가 부족한 실정이다. 특히 대다수의 연구는 해외 연구자가 해외 기업 데이터를 분석한 것이며, 국내 연구는 객관성 및 시의성 측면에서 한계를 가지고 있다. 본 연구에서는 계량경제학적 분석을 통해 기업 단위에서 AI 도입 영향요인을 규명한다. 이를 위해 신기술 도입 영향요인에 관한 대표적 이론인 TOE(Technology-Organization-Environment) 프레임워크 관점에서 기술적, 조직적, 환경적 맥락의 요인을 도출하고, 과학기술정보통신부·한국지능정보사회진흥원의 「2022년 정보화통계조사」를 활용하여 11,601개 국내 기업 데이터를 이용한 로지스틱 회귀분석을 실시한다. 본 연구는 국내 선행연구의 한계점을 보완함으로써 AI 및 신기술 도입 영향요인에 관한 연구 문헌을 확장하고, 실증분석을 통해 시의성있는 증거와 시사점을 제공한다는 점에서 의의를 가진다.

A Study on Methods to Prevent the Spread of COVID-19 Based on Machine Learning

  • KWAK, Youngsang;KANG, Min Soo
    • 한국인공지능학회지
    • /
    • 제8권1호
    • /
    • pp.7-9
    • /
    • 2020
  • In this paper, a study was conducted to find a self-diagnosis method to prevent the spread of COVID-19 based on machine learning. COVID-19 is an infectious disease caused by a newly discovered coronavirus. According to WHO(World Health Organization)'s situation report published on May 18th, 2020, COVID-19 has already affected 4,600,000 cases and 310,000 deaths globally and still increasing. The most severe problem of COVID-19 virus is that it spreads primarily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes, which occurs in everyday life. And also, at this time, there are no specific vaccines or treatments for COVID-19. Because of the secure diffusion method and the absence of a vaccine, it is essential to self-diagnose or do a self-diagnosis questionnaire whenever possible. But self-diagnosing has too many questions, and ambiguous standards also take time. Therefore, in this study, using SVM(Support Vector Machine), Decision Tree and correlation analysis found two vital factors to predict the infection of the COVID-19 virus with an accuracy of 80%. Applying the result proposed in this paper, people can self-diagnose quickly to prevent COVID-19 and further prevent the spread of COVID-19.

Real2Animation:애니메이션 제작지원을 위한 딥페이크 기술 활용 연구 (Real2Animation: A Study on the application of deepfake technology to support animation production)

  • 신동주;최봉준
    • 융합신호처리학회논문지
    • /
    • 제23권3호
    • /
    • pp.173-178
    • /
    • 2022
  • 최근 인공지능, 빅데이터, IoT 등의 다양한 컴퓨팅 기술이 발달하고 있다. 특히 콘텐츠 및 의료 산업 등 여러 분야에서 인공지능 기반의 딥페이크(Deepfake) 기술이 다양하게 활용되고 있다. 딥페이크 기술이란 딥러닝과 fake의 합성어로, AI의 핵심기술인 딥러닝을 통해 사람의 얼굴이나 신체를 합성하여 억양, 목소리 등을 따라 하게 만드는 기술이다. 본 논문은 딥페이크 기술을 활용하여 애니메이션 모델과 실제 인물사진의 합성을 통한 가상 캐릭터생성을 연구한다. 이를 통해 애니메이션 제작과정에서 일어나는 여러 가지 비용 손실을 최소화하고 작가들의 작업을 지원할 수 있다. 또한, 딥페이크 오픈소스가 인터넷에 퍼짐에 따라 많은 문제들이 나타나면서 딥페이크 기술을 악용한 범죄가 성행하고 있다. 본 연구를 통해서 딥페이크 기술을 성인물이 아닌 아동물에 적용하여 이 기술에 대한 새로운 관점을 제시한다.

Development of Metrics to Measure Reusability Quality of AIaaS

  • Eun-Sook Cho
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.147-153
    • /
    • 2023
  • 인공지능 기술의 전 산업 분야로 확산되면서 기존 SaaS에 인공지능 서비스가 탑재된 AIaaS가 등장하고 있다. 특히 비IT 분야 기업들에서는 소프트웨어 전문가의 부재, 빅 데이터 모델 훈련의 어려움, 다양한 형태의 데이터들에 대한 수집 및 분석에 대한 어려움 등을 겪고 있다. AIaaS는 인공지능 소프트웨어 개발에 필요한 다양한 IT 자원들 뿐만 아니라 인공지능 소프트웨어에 필요한 기능들을 서비스 형태로 제공함으로써 사용자들에게는 보다 쉽고 경제적으로 시스템을 구축할 수 있게 한다. 따라서 이러한 클라우드 기반의 AIaaS 서비스에 대한 수요와 공급은 점점 급증할 것이다. 그런데 이처럼 AIaaS에 대한 수요와 공급이 증가함에 따라 요구되는 것이 AIaaS에서 제공하는 서비스들의 품질이 중요한 요소가 된다. 그러나, 현재 이를 측정하기 위한 포괄적이고 실용적인 품질 평가 메트릭에 대한 연구가 미흡하다. 따라서 본 논문에서는 AIaaS의 서비스 품질 측정 요소 중 재사용성 평가를 위해 AIaaS가 갖는 특징인 구현성, 편리성, 효율성, 접근성을 기반으로 재사용성 측정에 필요한 4가지 메트릭인 사용성, 교체성, 확장성, 홍보성 메트릭을 개발하여 제안한다. 제안된 메트릭은 AIaaS에서 제공하는 서비스들이 향후 잠재된 사용자들에게 얼마나 재사용할 수 있는지를 예측하는 도구로 사용될 수 있다.

ETRI AI 실행전략 6: 산업·공공 AI 활용기술 연구개발 및 적용 (ETRI AI Strategy #6: Developing and Utilizing of AI Technology for Industries and Public Sector)

  • 김태완;연승준
    • 전자통신동향분석
    • /
    • 제35권7호
    • /
    • pp.56-66
    • /
    • 2020
  • As the development of artificial intelligence (AI) technology spreads to various industrial sectors, diversity in AI utilization rapidly increases, creating rich user experience. In addition, AI is required to solve various social problems through the use of public data. The spread of AI utilization across all sectors will continue, covering such industrial and public demands. This article examines the domestic and international trends in AI utilization technologies and establishes the direction of research and development (R&D), which is highly consistent with Korea's AI policy. ETRI, which leads AI's national R&D, has used its experience to establish AI R&D implementation strategies as well as technology roadmaps for the utilization of AI to improve individual quality of life, continuous growth in society, industrial innovation, and the solutions to public societal problems. In addition, it has derived tasks and implementation strategies for developing AI utilization technologies in 10 major areas including medical services.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.241-251
    • /
    • 2022
  • 화장품 및 뷰티산업에서 고객의 피부상태 진단과 관리는 중요한 필수기능이다. 소셜미디어 환경이 사회 전 분야에 확산되고 일반화되면서 피부 상태의 진단과 관리에 대한 다양하고 섬세한 고민과 요구 사항의 질문과 답변의 상호작용이 소셜미디어 커뮤니티에서 활발하게 다루어지고 있다. 그러나 소셜미디어 정보는 매우 다양하고 비정형적인 방대한 빅데이터이므로 적절한 피부상태 정보분석과 인공지능 기술을 접목한 지능화된 피부상태 진단 시스템이 필요하다. 본 논문에서는 소셜미디어의 텍스트 분석정보를 학습데이터로 가공하여 고객의 피부상태를 지능적으로 진단 및 관리하기 위한 피부상태진단시스템 SCDIS를 개발하였다. SCDIS에서는 딥러닝 기계학습 방법인 인공신경망 기술을 사용하여 자동적으로 피부상태 유형을 진단하는 인공신경망 모델 AnnTFIDF을 빌드업하여 사용하였다. 인공신경망 모델 AnnTFIDF의 성능은 테스트샘플 데이터를 사용하여 분석되었으며, 피부상태 유형 진단 예측 값의 정확성은 약 95%의 높은 성능을 나타내었다. 본 논문의 실험 및 성능분석결과를 통하여 SCDIS는 화장품 및 뷰티산업 분야의 피부상태 분석 및 진단 관리 과정에서 효율적으로 사용 가능한 지능화된 도구로 평가할 수 있다. 본 논문에서 제안된 시스템은 소셜미디어 기반의 새로운 환경에서 화장품 및 피부미용에 대한 사용자의 요구를 체계적으로 파악하고 진단하는 기초 기술로 사용 가능할 것이다. 그리고 이 연구는 새로운 기술 트렌드인 맞춤형 화장품제조와 소비자중심의 뷰티산업기술 수요를 해결하기 위한 기초 연구로 사용될 수 있을 것이다.

인공지능을 활용한 흉부 엑스선 영상의 코로나19 검출 및 분류에 대한 분석 연구 (Analysis Study on the Detection and Classification of COVID-19 in Chest X-ray Images using Artificial Intelligence)

  • 윤명성;권채림;김성민;김수인;조성준;최유찬;김상현
    • 한국방사선학회논문지
    • /
    • 제16권5호
    • /
    • pp.661-672
    • /
    • 2022
  • COVID-19를 발생시키는 SARS-CoV2 바이러스가 발생한 후 전염병은 전 세계로 확산되며, 감염 사례와 사망자의 수가 빠르게 증가함에 따라 의료자원의 부족 문제가 야기되었다. 이것을 해결하려는 방법으로 인공지능을 활용한 흉부 X-ray 검사가 일차적인 진단 방법으로 관심을 받게 되었다. 본 연구에서는 인공지능을 통한 COVID-19 판독 방식들에 대해 종합적으로 분석하는 것에 목적을 두고 있다. 이 목적을 달성하기 위해 292개의 논문을 일련의 분류 방법을 거처 수집했다. 이러한 자료들을 토대로 Accuracy, Precision, Area Under Curve(AUC), Sensitivity, Specificity, F1-score, Recall, K-fold, Architecture, Class를 포함한 성능 측정정보를 분석했다. 그 결과로 평균 Accuracy, Precision, AUC, Sensitivity, Specificity 값은 각각 95.2%, 94.81%, 94.01%, 93.5%, 93.92%로 도출되었다. 연도별 성능 측정정보는 점차 증가하는 값을 나타냈고 이 외에도 Class 수, 이미지 데이터 수에 따른 변화율, Architecture 사용 비율, K-fold에 관한 연구를 진행했다. 현재 인공지능을 활용한 COVID-19의 진단은 독자적으로 사용되기에는 여러 문제가 존재하지만, 의사의 보조수단으로써 사용됨에는 부족함이 없을 것으로 예상된다.

빅데이터를 활용한 HPAI Virus 확산 예방 및 추적 (Prevent and Track the Spread of Highy Pathogenic Avian Influenza Virus using Big Data)

  • 최대우;이원빈;송유한;강태훈;한예지
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.145-153
    • /
    • 2020
  • 이 연구는 2018년도 정부(농림축산식품부)의 재원으로 농림식품기술기획평가원의 지원을 받아 수행된 연구이다. 고병원성 조류인플루엔자(Highly Pathogenic Avian Influenza, HPAI)는 해외로부터 철새를 통해 유입되고 있으나 어떤 경로를 통해 농가에 확산하는지 정확히 밝혀진 바 없다. 그리고 발생 농가에서 유입되는 농가 간의 전이도 차량이 주요 원인이라고 추정할 뿐, 전파 주요 원인이 정확히 밝혀진 것은 아니다. 하지만 가장 빈번하게 농가에 방문하는 차량의 방문유형이 가축 운반 및 사료 운반과 같은 농가와 시설 간의 방문이기 때문에 발생 농가에 들른 차량과 시설의 관계를 분석할 필요가 있다. 본 논문 연구에서는 농림축산검역본부에서 제공하는 KAHIS(Korea Animal Health Integrated System) 데이터를 기반으로, HPAI Virus 전이의 주요 원인을 확인하고자 한다.

딥러닝 기반 OCR 인식 엔진의 정확도 향상을 위한 전/후처리기 기술 구현 (Implementation of Pre-Post Process for Accuraty Improvement of OCR Recognition Engine Based on Deep-Learning Technology)

  • 장창복;김기봉
    • 융합정보논문지
    • /
    • 제12권1호
    • /
    • pp.163-170
    • /
    • 2022
  • 4차산업 혁명이 도래함에 따라 AI 기술을 적용하는 솔루션 개발이 활발하게 이루어지고 있다. 2017년도부터 금융권, 보험사를 중심으로 AI 기반 RPA(Robotic Process Automation)을 이용한 업무 자동화 솔루션 도입이 이루어지기 시작했으며, 최근에는 RPA 솔루션 도입 단계를 지나 확산하는 시기로 진입하고 있다. 이러한 RPA 솔루션을 이용한 업무 자동화 중에서 각 종 문서들을 이용한 업무 자동화에는 문서내의 문자 정보를 얼마나 정확하게 인식하는지가 매우 중요하다. 이러한 문자 인식은 최근 딥러닝 기술을 도입함으로써 그 정확도가 많이 높아졌지만, 여전히 완벽한 인식 정확도 갖는 인식 모델은 존재하지 않는다. 따라서, 본 논문에서는 딥러닝 기반 문자 인식 엔진에 전/후 처리기 기술을 적용할 경우 얼마나 정확도가 향상되는지를 확인하고 RPA 인식 엔진과 연계 기술을 구현하였다.

절차적 함수를 이용한 연기 모델링 및 렌더링 기법 (Smoke Modeling and Rendering Techniques using Procedural Functions)

  • 박상현
    • 한국전자통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.905-912
    • /
    • 2022
  • 4차 산업혁명의 핵심 기술 중 하나인 가상현실은 오큘러스로 대표되는 저가의 웨어러블 장치의 보급으로 새로운 국면을 맞이하고 있다. 현실적인 위험성 문제로 실질적인 훈련이 거의 불가능한 재난 대피 훈련의 경우 가상현실은 효과적인 훈련을 가능하게 하는 새로운 대안이 되고 있다. 본 논문에서는 가상현실로 구현되는 화재 대피 훈련 콘텐츠에 적용될 수 있는 연기 모델링 방법을 제안한다. 화재 발생 시 연기는 통로를 따라 확산되고 시간에 따라 연기의 밀도가 변한다. 제안하는 방법은 시뮬레이션을 통해 계산한 연기의 밀도값을 실시간으로 모델에 반영할 수 있는 절차적 함수를 적용하여 연기를 모델링한다. 공장을 배경으로 구현한 결과를 보면 제안하는 방법이 사용자의 움직임에 따른 연기의 변화를 사실적으로 표현하는 것을 볼 수 있다.