• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.023 seconds

Artificial Intelligence in Neuroimaging: Clinical Applications

  • Choi, Kyu Sung;Sunwoo, Leonard
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Artificial intelligence (AI) powered by deep learning (DL) has shown remarkable progress in image recognition tasks. Over the past decade, AI has proven its feasibility for applications in medical imaging. Various aspects of clinical practice in neuroimaging can be improved with the help of AI. For example, AI can aid in detecting brain metastases, predicting treatment response of brain tumors, generating a parametric map of dynamic contrast-enhanced MRI, and enhancing radiomics research by extracting salient features from input images. In addition, image quality can be improved via AI-based image reconstruction or motion artifact reduction. In this review, we summarize recent clinical applications of DL in various aspects of neuroimaging.

The Digital Transformation of Power Grid under the Background of Artificial Intelligence

  • Li Liu;Zhiqi Li;Sujuan Deng;Yilei Zhao;Yuening Wang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.302-309
    • /
    • 2023
  • Artificial intelligence (AI) plays a crucial role in the intelligent development of China's power system. It is also an important part of the digital development of the power grid. The development of AI determines whether the digital transformation of China's power system can be successfully implemented. Therefore, this paper discusses the digital transformation of the power grid based on AI technologies. The author has established a digital evaluation index system to reflect the development of the power grid in one province. Both qualitative and quantitative methods have been adopted in the analysis, which delves into the economic effectiveness, quality, and coordination of power grid development in the province in a comprehensive way. Results show that, to meet the needs of the power grid's digital transformation, the correlation coefficient between the power grid's development and the province's overall coordination has been increasing in recent years.

Application of AI-based Customer Segmentation in the Insurance Industry

  • Kyeongmin Yum;Byungjoon Yoo;Jaehwan Lee
    • Asia pacific journal of information systems
    • /
    • v.32 no.3
    • /
    • pp.496-513
    • /
    • 2022
  • Artificial intelligence or big data technologies can benefit finance companies such as those in the insurance sector. With artificial intelligence, companies can develop better customer segmentation methods and eventually improve the quality of customer relationship management. However, the application of AI-based customer segmentation in the insurance industry seems to have been unsuccessful. Findings from our interviews with sales agents and customer service managers indicate that current customer segmentation in the Korean insurance company relies upon individual agents' heuristic decisions rather than a generalizable data-based method. We propose guidelines for AI-based customer segmentation for the insurance industry, based on the CRISP-DM standard data mining project framework. Our proposed guideline provides new insights for studies on AI-based technology implementation and has practical implications for companies that deploy algorithm-based customer relationship management systems.

Format-Controllable Text Editing in Real-Scene Images (실제 장면 이미지에서 포맷 제어 가능한 텍스트 편집)

  • Quang-Vinh Dang;Hyung-Jeong Yang;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.644-646
    • /
    • 2024
  • Flexibility is crucial in applications where users or systems require precise control over the appearance of text in images, particularly in scene text editing tasks. However, previous methods have primarily focused on altering text content, often neglecting the important aspect of controlling text formatting. In this paper, we propose a text editing model that not only edits content but also provides control over the format, utilizing a diffusion model with denoising and text-aware losses. By integrating these mechanisms, the model is capable of generating high-quality scene text images based on user-specified inputs such as text, size, and font, ensuring that both the content and appearance align with user preferences. We evaluate the model's performance using OCR accuracy on the ICDAR FST dataset, and the results demonstrate that our approach is highly competitive and effective when compared to existing methods in the field.

Current Status and Future Direction of Artificial Intelligence in Healthcare and Medical Education (의료분야에서 인공지능 현황 및 의학교육의 방향)

  • Jung, Jin Sup
    • Korean Medical Education Review
    • /
    • v.22 no.2
    • /
    • pp.99-114
    • /
    • 2020
  • The rapid development of artificial intelligence (AI), including deep learning, has led to the development of technologies that may assist in the diagnosis and treatment of diseases, prediction of disease risk and prognosis, health index monitoring, drug development, and healthcare management and administration. However, in order for AI technology to improve the quality of medical care, technical problems and the efficacy of algorithms should be evaluated in real clinical environments rather than the environment in which algorithms are developed. Further consideration should be given to whether these models can improve the quality of medical care and clinical outcomes of patients. In addition, the development of regulatory systems to secure the safety of AI medical technology, the ethical and legal issues related to the proliferation of AI technology, and the impacts on the relationship with patients also need to be addressed. Systematic training of healthcare personnel is needed to enable adaption to the rapid changes in the healthcare environment. An overall review and revision of undergraduate medical curriculum is required to enable extraction of significant information from rapidly expanding medical information, data science literacy, empathy/compassion for patients, and communication among various healthcare providers. Specialized postgraduate AI education programs for each medical specialty are needed to develop proper utilization of AI models in clinical practice.

Developing an Artificial Intelligence Algorithm to Predict the Timing of Dialysis Vascular Surgery (투석혈관 수술시기 예측을 위한 인공지능 알고리즘 개발)

  • Kim Dohyoung;Kim Hyunsuk;Lee Sunpyo;Oh Injong;Park Seungbum
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.97-115
    • /
    • 2023
  • In South Korea, chronic kidney disease(CKD) impacts around 4.6 million adults, leading to a high reliance on hemodialysis. For effective dialysis, vascular access is crucial, with decisions about vascular surgeries often made during dialysis sessions. Anticipating these needs could improve dialysis quality and patient comfort. This study investigates the use of Artificial Intelligence(AI) to predict the timing of surgeries for dialysis vessels, an area not extensively researched. We've developed an AI algorithm using predictive maintenance methods, transitioning from machine learning to a more advanced deep learning approach with Long Short-Term Memory(LSTM) models. The algorithm processes variables such as venous pressure, blood flow, and patient age, demonstrating high effectiveness with metrics exceeding 0.91. By shortening the data collection intervals, a more refined model can be obtained. Implementing this AI in clinical practice could notably enhance patient experience and the quality of medical services in dialysis, marking a significant advancement in the treatment of CKD.

As how artificial intelligence is revolutionizing endoscopy

  • Jean-Francois Rey
    • Clinical Endoscopy
    • /
    • v.57 no.3
    • /
    • pp.302-308
    • /
    • 2024
  • With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.

An Empirical Study on Defense Future Technology in Artificial Intelligence (인공지능 분야 국방 미래기술에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan;Yun, Il-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.409-416
    • /
    • 2020
  • Artificial intelligence, which is in the spotlight as the core driving force of the 4th industrial revolution, is expanding its scope to various industrial fields such as smart factories and autonomous driving with the development of high-performance hardware, big data, data processing technology, learning methods and algorithms. In the field of defense, as the security environment has changed due to decreasing defense budget, reducing military service resources, and universalizing unmanned combat systems, advanced countries are also conducting technical and policy research to incorporate artificial intelligence into their work by including recognition systems, decision support, simplification of the work processes, and efficient resource utilization. For this reason, the importance of technology-driven planning and investigation is also increasing to discover and research potential defense future technologies. In this study, based on the research data that was collected to derive future defense technologies, we analyzed the characteristic evaluation indicators for future technologies in the field of artificial intelligence and conducted empirical studies. The study results confirmed that in the future technologies of the defense AI field, the applicability of the weapon system and the economic ripple effect will show a significant relationship with the prospect.

Recommendations for the Construction of a Quslity-Controlled Stress Measurement Dataset (품질이 관리된 스트레스 측정용 테이터셋 구축을 위한 제언)

  • Tai Hoon KIM;In Seop NA
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2024
  • The construction of a stress measurement detaset plays a curcial role in various modern applications. In particular, for the efficient training of artificial intelligence models for stress measurement, it is essential to compare various biases and construct a quality-controlled dataset. In this paper, we propose the construction of a stress measurement dataset with quality management through the comparison of various biases. To achieve this, we introduce strss definitions and measurement tools, the process of building an artificial intelligence stress dataset, strategies to overcome biases for quality improvement, and considerations for stress data collection. Specifically, to manage dataset quality, we discuss various biases such as selection bias, measurement bias, causal bias, confirmation bias, and artificial intelligence bias that may arise during stress data collection. Through this paper, we aim to systematically understand considerations for stress data collection and various biases that may occur during the construction of a stress dataset, contributing to the construction of a dataset with guaranteed quality by overcoming these biases.

A Study on the Realization of Virtual Simulation Face Based on Artificial Intelligence

  • Zheng-Dong Hou;Ki-Hong Kim;Gao-He Zhang;Peng-Hui Li
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.152-158
    • /
    • 2023
  • In recent years, as computer-generated imagery has been applied to more industries, realistic facial animation is one of the important research topics. The current solution for realistic facial animation is to create realistic rendered 3D characters, but the 3D characters created by traditional methods are always different from the actual characters and require high cost in terms of staff and time. Deepfake technology can achieve the effect of realistic faces and replicate facial animation. The facial details and animations are automatically done by the computer after the AI model is trained, and the AI model can be reused, thus reducing the human and time costs of realistic face animation. In addition, this study summarizes the way human face information is captured and proposes a new workflow for video to image conversion and demonstrates that the new work scheme can obtain higher quality images and exchange effects by evaluating the quality of No Reference Image Quality Assessment.