• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.032 seconds

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.

Applications and Possibilities of Artificial Intelligence in Mathematics Education (수학교육에서 인공지능 활용 가능성)

  • Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.545-561
    • /
    • 2020
  • The purpose of this study is to investigate the applications and possibilities of major programs that provide services using artificial intelligence in mathematics education. For this study, related papers, reports, and materials were collected and analyzed, focusing on materials mostly published within the last five years. The researcher searched the keywords of "artificial intelligence", "artificial intelligence", "AI" and "mathematics education" independently or in combination. As a result of the study, artificial intelligence for mathematics education was mostly supporting learners' personalized mathematics learning, defining it as an auxiliary role to support human mathematics teachers, and upgrading the technology of not only cognitive aspects but also affective aspects. As suggestions, the researcher argued that followings are necessary: Research for the establishment of an elaborate artificial intelligence mathematical system, discovery of artificial intelligence technology for appropriate use to support mathematics education, development of high quality of mathematics contents for artificial intelligence, and the establishment and operation of a cloud-based comprehensive system for mathematics education. The researcher proposed that continuous research to effectively help students study mathematics using artificial intelligence including students' emotional or empathetic abilities, and collaborative learning, which is only possible in offline environments. Also, the researcher suggested that more sophisticated materials should be developed for designing mathematics teaching and learning by using artificial intelligence.

Trends of Artificial Intelligence Product Certification Programs

  • Yejin SHIN;Joon Ho KWAK;KyoungWoo CHO;JaeYoung HWANG;Sung-Min WOO
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.1-5
    • /
    • 2023
  • With recent advancements in artificial intelligence (AI) technology, more products based on AI are being launched and used. However, using AI safely requires an awareness of the potential risks it can pose. These concerns must be evaluated by experts and users must be informed of the results. In response to this need, many countries have implemented certification programs for products based on AI. In this study, we analyze several trends and differences in AI product certification programs across several countries and emphasize the importance of such programs in ensuring the safety and trustworthiness of products that include AI. To this end, we examine four international AI product certification programs and suggest methods for improving and promoting these programs. The certification programs target AI products produced for specific purposes such as autonomous intelligence systems and facial recognition technology, or extend a conventional software quality certification based on the ISO/IEC 25000 standard. The results of our analysis show that companies aim to strategically differentiate their products in the market by ensuring the quality and trustworthiness of AI technologies. Additionally, we propose methods to improve and promote the certification programs based on the results. These findings provide new knowledge and insights that contribute to the development of AI-based product certification programs.

Applying Artificial Intelligence Based on Fuzzy Logic for Improved Cognitive Wireless Data Transmission: Models and Techniques

  • Ahmad AbdulQadir AlRababah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, the development of wireless network technologies has been advancing in several directions: increasing data transmission speed, enhancing user mobility, expanding the range of services offered, improving the utilization of the radio frequency spectrum, and enhancing the intelligence of network and subscriber equipment. In this research, a series of contradictions has emerged in the field of wireless network technologies, with the most acute being the contradiction between the growing demand for wireless communication services (on operational frequencies) and natural limitations of frequency resources, in addition to the contradiction between the expansions of the spectrum of services offered by wireless networks, increased quality requirements, and the use of traditional (outdated) management technologies. One effective method for resolving these contradictions is the application of artificial intelligence elements in wireless telecommunication systems. Thus, the development of technologies for building intelligent (cognitive) radio and cognitive wireless networks is a technological imperative of our time. The functions of artificial intelligence in prospective wireless systems and networks can be implemented in various ways. One of the modern approaches to implementing artificial intelligence functions in cognitive wireless network systems is the application of fuzzy logic and fuzzy processors. In this regard, the work focused on exploring the application of fuzzy logic in prospective cognitive wireless systems is considered relevant.

Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI)

  • Cheolhee Lee;Taehoe Koo;Namwook Park;Nakhoon Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.

Emotional-Controllable Talking Face Generation on Real-Time System

  • Van-Thien Phan;Hyung-Jeong Yang;Seung-Won Kim;Ji-Eun Shin;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.523-526
    • /
    • 2024
  • Recent progress in audio-driven talking face generation has focused on achieving more realistic and emotionally expressive lip movements, enhancing the quality of virtual avatars and animated characters for applications in entertainment, education, healthcare, and more. Despite these advances, challenges remain in creating natural and emotionally nuanced lip synchronization efficiently and accurately. To address these issues, we introduce a novel method for audio-driven lip-sync that offers precise control over emotional expressions, outperforming current techniques. Our method utilizes Conditional Deep Variational Autoencoder to produce lifelike lip movements that align seamlessly with audio inputs while dynamically adjusting for various emotional states. Experimental results highlight the advantages of our approach, showing significant improvements in emotional accuracy and the overall quality of the generated facial animations, video sequences on the Crema-D dataset [1].

AI Performance Based On Learning-Data Labeling Accuracy (인공지능 학습데이터 라벨링 정확도에 따른 인공지능 성능)

  • Ji-Hoon Lee;Jieun Shin
    • Journal of Industrial Convergence
    • /
    • v.22 no.1
    • /
    • pp.177-183
    • /
    • 2024
  • The study investigates the impact of data quality on the performance of artificial intelligence (AI). To this end, the impact of labeling error levels on the performance of artificial intelligence was compared and analyzed through simulation, taking into account the similarity of data features and the imbalance of class composition. As a result, data with high similarity between characteristic variables were found to be more sensitive to labeling accuracy than data with low similarity between characteristic variables. It was observed that artificial intelligence accuracy tended to decrease rapidly as class imbalance increased. This will serve as the fundamental data for evaluating the quality criteria and conducting related research on artificial intelligence learning data.

Real-world multimodal lifelog dataset for human behavior study

  • Chung, Seungeun;Jeong, Chi Yoon;Lim, Jeong Mook;Lim, Jiyoun;Noh, Kyoung Ju;Kim, Gague;Jeong, Hyuntae
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.426-437
    • /
    • 2022
  • To understand the multilateral characteristics of human behavior and physiological markers related to physical, emotional, and environmental states, extensive lifelog data collection in a real-world environment is essential. Here, we propose a data collection method using multimodal mobile sensing and present a long-term dataset from 22 subjects and 616 days of experimental sessions. The dataset contains over 10 000 hours of data, including physiological, data such as photoplethysmography, electrodermal activity, and skin temperature in addition to the multivariate behavioral data. Furthermore, it consists of 10 372 user labels with emotional states and 590 days of sleep quality data. To demonstrate feasibility, human activity recognition was applied on the sensor data using a convolutional neural network-based deep learning model with 92.78% recognition accuracy. From the activity recognition result, we extracted the daily behavior pattern and discovered five representative models by applying spectral clustering. This demonstrates that the dataset contributed toward understanding human behavior using multimodal data accumulated throughout daily lives under natural conditions.

Artificial Intelligence in Personalized ICT Learning

  • Volodymyrivna, Krasheninnik Iryna;Vitaliiivna, Chorna Alona;Leonidovych, Koniukhov Serhii;Ibrahimova, Liudmyla;Iryna, Serdiuk
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • Artificial Intelligence has stimulated every aspect of today's life. Human thinking quality is trying to be involved through digital tools in all research areas of the modern era. The education industry is also leveraging artificial intelligence magical power. Uses of digital technologies in pedagogical paradigms are being observed from the last century. The widespread involvement of artificial intelligence starts reshaping the educational landscape. Adaptive learning is an emerging pedagogical technique that uses computer-based algorithms, tools, and technologies for the learning process. These intelligent practices help at each learning curve stage, from content development to student's exam evaluation. The quality of information technology students and professionals training has also improved drastically with the involvement of artificial intelligence systems. In this paper, we will investigate adopted digital methods in the education sector so far. We will focus on intelligent techniques adopted for information technology students and professionals. Our literature review works on our proposed framework that entails four categories. These categories are communication between teacher and student, improved content design for computing course, evaluation of student's performance and intelligent agent. Our research will present the role of artificial intelligence in reshaping the educational process.

Standardization Trends on Artificial Intelligence in Medicine (의료 인공지능 표준화 동향)

  • Jeon, J.H.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.113-126
    • /
    • 2019
  • Based on the accumulation of medical big data, advances in medical artificial intelligence technology facilitate the timely treatment of disease through the reading the medical images and the increase of prediction speed and accuracy of diagnoses. In addition, these advances are expected to spark significant innovations in reducing medical costs and improving care quality. There are already approximately 40 FDA approved products in the US, and more than 10 products with K-FDA approval in Korea. Medical applications and services based on artificial intelligence are expected to spread rapidly in the future. Furthermore, the evolution of medical artificial intelligence technology is expanding the boundaries or limits of various related issues such as reference standards and specifications, ethical and clinical validation issues, and the harmonization of international regulatory systems.