Deep learning (DL) is a subset of machine learning and artificial intelligence that has a deep neural network with a structure similar to the human neural system and has been trained using big data. DL narrows the gap between data acquisition and meaningful interpretation without explicit programming. It has so far outperformed most classification and regression methods and can automatically learn data representations for specific tasks. The application areas of DL in radiation oncology include classification, semantic segmentation, object detection, image translation and generation, and image captioning. This article tries to understand what is the potential role of DL and what can be more achieved by utilizing it in radiation oncology. With the advances in DL, various studies contributing to the development of radiation oncology were investigated comprehensively. In this article, the radiation treatment process was divided into six consecutive stages as follows: patient assessment, simulation, target and organs-at-risk segmentation, treatment planning, quality assurance, and beam delivery in terms of workflow. Studies using DL were classified and organized according to each radiation treatment process. State-of-the-art studies were identified, and the clinical utilities of those researches were examined. The DL model could provide faster and more accurate solutions to problems faced by oncologists. While the effect of a data-driven approach on improving the quality of care for cancer patients is evidently clear, implementing these methods will require cultural changes at both the professional and institutional levels. We believe this paper will serve as a guide for both clinicians and medical physicists on issues that need to be addressed in time.
Journal of Information Science Theory and Practice
/
v.10
no.spc
/
pp.143-153
/
2022
With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.
Journal of the Microelectronics and Packaging Society
/
v.30
no.4
/
pp.69-78
/
2023
With the rapid growth of artificial intelligence, the demand for semiconductors is enormously increasing everywhere. To ensure the manufacturing quality and quantity simultaneously, the importance of automatic defect detection during the packaging process has been re-visited by adapting various deep learning-based methodologies into automatic packaging defect inspection. Deep learning (DL) models require a large amount of data for training, but due to the nature of the semiconductor industry where security is important, sharing and labeling of relevant data is challenging, making it difficult for model training. In this study, we propose a new framework for securing sufficient data for DL models with fewer computing resources through a divide-and-conquer approach. The proposed method divides high-resolution images into pre-defined sub-regions and assigns conditional labels to each region, then trains individual sub-regions and boundaries with boundary loss inducing the globally coherent and seamless images. Afterwards, full-size image is reconstructed by combining divided sub-regions. The experimental results show that the images obtained through this research have high efficiency, consistency, quality, and generality.
Nan-He Yoon;Sunghun Yun;Dongmin Seo;Yoon Kim;Hongsoo Kim
Health Policy and Management
/
v.33
no.4
/
pp.479-488
/
2023
Background: By applying the suggested criteria for needs-based chronic medical care and long-term care delivery system for the elderly, the current status of delivery system was identified and regional delivery systems were categorized according to quantity and quality of delivery system. Methods: National claims data were used for this study. All claims data of medical and long-term care uses by the elderly and all claims data from long-term care hospitals and nursing homes in 2016 were analyzed to categorize the regional medical and long-term care delivery system. The current status of the delivery system with a high possibility of transition to a needs-based appropriate delivery system was identified. The necessary and actual amount of regional supply was calculated based on their needs, and the structure of delivery systems was evaluated in terms of the needs-based quality of the system. Finally, all regions were categorized into 15 types of medical and care delivery systems for the elderly. Results: Of the total 55 regions, 89.1% of regions had an oversupply of elderly medical and care services compared to the necessary supply based on their needs. However, 69.1% of regions met the criteria for less than two types of needs groups, and 21.8% of regions were identified as regions where the numbers of institutions or regions with a high possibility of transition to an appropriate delivery system were below the average levels for all four needs groups. Conclusion: In order to establish an appropriate community-based integrated elderly care system, it is necessary to analyze the characteristics of the regional delivery system categories and to plan a needs-based delivery system regionally.
International Journal of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.7-13
/
2021
Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.
With the rapid advancement of social media analytics and artificial intelligence, many studies have used online customer reviews as an important source to measure service quality in many industries, including the hotel industry. However, these studies have failed to identify the relative importance of different dimensions of service quality and their role in customer satisfaction. To fill this research gap, this study aims to identify the effects of service quality on hotel customer satisfaction from the multidimensional perspectives using sentiment analysis with self-training on online reviews. Additionally, the moderating role of the brand of origin for each service quality dimension is also investigated. Drawing on the SERVQUAL model and brand of origin concept, this study develops 12 hypotheses and empirically tests them using 30,070 online customer hotel reviews collected from TripAdvisor.com. The results indicated that overall service quality and each dimension of SERVQUAL significantly influenced customer satisfaction of hotels. The results also confirmed the moderating effects of brand of origin on overall service quality. However, the moderating effects of brand of origin for the tangible, reliability, and empathy dimensions of service quality were significant, whereas the effects for responsiveness and assurance were not. This study sheds new light on service quality measurement by analyzing the multidimensional features of service quality and the role of brand of origin in the hotel service context.
Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
Advances in nano research
/
v.12
no.6
/
pp.549-566
/
2022
Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.
Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2000.10a
/
pp.590-594
/
2000
One of the most important factors for a leather quality inspection is its surface condition. So far a leather quality level has been discriminated by human's eye inspection, But, these kinds of method needs a lot of labor time and cause decision mistakes from an optical illusion. It means leather quality inspection is very subjective and there is no consistency. In this study, we present computer vision based a leather quality inspection system using an Artificial intelligence. Suggested system ran give standard spec for a leather quality and take human inspection duty place.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2001.05a
/
pp.399-403
/
2001
One of the most important factors for a leather quality inspection is its surface condition. So far, a leather quality level has been discriminated by human's eye inspection. But, these kinds of method needs a lot of labor time and cause decision mistakes from an optical illusion. It means leather quality inspection is very subjective and there is no consistency. In this study, we present computer vision based a leather quality inspection system using an Artificial intelligence. Suggested system can give standard spec for a leather quality and take human inspection duty place.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.