• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.028 seconds

Deep Learning in Radiation Oncology

  • Cheon, Wonjoong;Kim, Haksoo;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.111-123
    • /
    • 2020
  • Deep learning (DL) is a subset of machine learning and artificial intelligence that has a deep neural network with a structure similar to the human neural system and has been trained using big data. DL narrows the gap between data acquisition and meaningful interpretation without explicit programming. It has so far outperformed most classification and regression methods and can automatically learn data representations for specific tasks. The application areas of DL in radiation oncology include classification, semantic segmentation, object detection, image translation and generation, and image captioning. This article tries to understand what is the potential role of DL and what can be more achieved by utilizing it in radiation oncology. With the advances in DL, various studies contributing to the development of radiation oncology were investigated comprehensively. In this article, the radiation treatment process was divided into six consecutive stages as follows: patient assessment, simulation, target and organs-at-risk segmentation, treatment planning, quality assurance, and beam delivery in terms of workflow. Studies using DL were classified and organized according to each radiation treatment process. State-of-the-art studies were identified, and the clinical utilities of those researches were examined. The DL model could provide faster and more accurate solutions to problems faced by oncologists. While the effect of a data-driven approach on improving the quality of care for cancer patients is evidently clear, implementing these methods will require cultural changes at both the professional and institutional levels. We believe this paper will serve as a guide for both clinicians and medical physicists on issues that need to be addressed in time.

A Network Packet Analysis Method to Discover Malicious Activities

  • Kwon, Taewoong;Myung, Joonwoo;Lee, Jun;Kim, Kyu-il;Song, Jungsuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.143-153
    • /
    • 2022
  • With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.

MAGICal Synthesis: Memory-Efficient Approach for Generative Semiconductor Package Image Construction (MAGICal Synthesis: 반도체 패키지 이미지 생성을 위한 메모리 효율적 접근법)

  • Yunbin Chang;Wonyong Choi;Keejun Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.69-78
    • /
    • 2023
  • With the rapid growth of artificial intelligence, the demand for semiconductors is enormously increasing everywhere. To ensure the manufacturing quality and quantity simultaneously, the importance of automatic defect detection during the packaging process has been re-visited by adapting various deep learning-based methodologies into automatic packaging defect inspection. Deep learning (DL) models require a large amount of data for training, but due to the nature of the semiconductor industry where security is important, sharing and labeling of relevant data is challenging, making it difficult for model training. In this study, we propose a new framework for securing sufficient data for DL models with fewer computing resources through a divide-and-conquer approach. The proposed method divides high-resolution images into pre-defined sub-regions and assigns conditional labels to each region, then trains individual sub-regions and boundaries with boundary loss inducing the globally coherent and seamless images. Afterwards, full-size image is reconstructed by combining divided sub-regions. The experimental results show that the images obtained through this research have high efficiency, consistency, quality, and generality.

Categorization of Regional Delivery System for the Elderly Chronic Health Care and Long-Term Care (지역별 노인 만성기 의료 및 요양·돌봄 공급체계 유형화)

  • Nan-He Yoon;Sunghun Yun;Dongmin Seo;Yoon Kim;Hongsoo Kim
    • Health Policy and Management
    • /
    • v.33 no.4
    • /
    • pp.479-488
    • /
    • 2023
  • Background: By applying the suggested criteria for needs-based chronic medical care and long-term care delivery system for the elderly, the current status of delivery system was identified and regional delivery systems were categorized according to quantity and quality of delivery system. Methods: National claims data were used for this study. All claims data of medical and long-term care uses by the elderly and all claims data from long-term care hospitals and nursing homes in 2016 were analyzed to categorize the regional medical and long-term care delivery system. The current status of the delivery system with a high possibility of transition to a needs-based appropriate delivery system was identified. The necessary and actual amount of regional supply was calculated based on their needs, and the structure of delivery systems was evaluated in terms of the needs-based quality of the system. Finally, all regions were categorized into 15 types of medical and care delivery systems for the elderly. Results: Of the total 55 regions, 89.1% of regions had an oversupply of elderly medical and care services compared to the necessary supply based on their needs. However, 69.1% of regions met the criteria for less than two types of needs groups, and 21.8% of regions were identified as regions where the numbers of institutions or regions with a high possibility of transition to an appropriate delivery system were below the average levels for all four needs groups. Conclusion: In order to establish an appropriate community-based integrated elderly care system, it is necessary to analyze the characteristics of the regional delivery system categories and to plan a needs-based delivery system regionally.

Image Enhanced Machine Vision System for Smart Factory

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2021
  • Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.

Measuring Hotel Service Quality Using Social Media Analytics: The Moderating Effects of Brand of Origin

  • Byounggu Choi;Shin-Hyeok Kang
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.677-701
    • /
    • 2023
  • With the rapid advancement of social media analytics and artificial intelligence, many studies have used online customer reviews as an important source to measure service quality in many industries, including the hotel industry. However, these studies have failed to identify the relative importance of different dimensions of service quality and their role in customer satisfaction. To fill this research gap, this study aims to identify the effects of service quality on hotel customer satisfaction from the multidimensional perspectives using sentiment analysis with self-training on online reviews. Additionally, the moderating role of the brand of origin for each service quality dimension is also investigated. Drawing on the SERVQUAL model and brand of origin concept, this study develops 12 hypotheses and empirically tests them using 30,070 online customer hotel reviews collected from TripAdvisor.com. The results indicated that overall service quality and each dimension of SERVQUAL significantly influenced customer satisfaction of hotels. The results also confirmed the moderating effects of brand of origin on overall service quality. However, the moderating effects of brand of origin for the tangible, reliability, and empathy dimensions of service quality were significant, whereas the effects for responsiveness and assurance were not. This study sheds new light on service quality measurement by analyzing the multidimensional features of service quality and the role of brand of origin in the hotel service context.

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

A Study of Leather Quality Discrimination Using a Surface Curvature Image(I) (표면의 굴곡 특징을 이용한 피혁 자동 등급 선별에 관한 연구(I))

  • 이명수;이규동;김광섭;길경석;권장우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.590-594
    • /
    • 2000
  • One of the most important factors for a leather quality inspection is its surface condition. So far a leather quality level has been discriminated by human's eye inspection, But, these kinds of method needs a lot of labor time and cause decision mistakes from an optical illusion. It means leather quality inspection is very subjective and there is no consistency. In this study, we present computer vision based a leather quality inspection system using an Artificial intelligence. Suggested system ran give standard spec for a leather quality and take human inspection duty place.

  • PDF

A Study of Leather Quality Inspection Using a Computer Vision (컴퓨터 비젼을 이용한 피혁 자동 등급 선별 시스템에 관한 연구)

  • 이명수;김명재;김광섭;길경석;권장우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.399-403
    • /
    • 2001
  • One of the most important factors for a leather quality inspection is its surface condition. So far, a leather quality level has been discriminated by human's eye inspection. But, these kinds of method needs a lot of labor time and cause decision mistakes from an optical illusion. It means leather quality inspection is very subjective and there is no consistency. In this study, we present computer vision based a leather quality inspection system using an Artificial intelligence. Suggested system can give standard spec for a leather quality and take human inspection duty place.

  • PDF