• Title/Summary/Keyword: artificial intelligence design

Search Result 773, Processing Time 0.028 seconds

PathGAN: Local path planning with attentive generative adversarial networks

  • Dooseop Choi;Seung-Jun Han;Kyoung-Wook Min;Jeongdan Choi
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1004-1019
    • /
    • 2022
  • For autonomous driving without high-definition maps, we present a model capable of generating multiple plausible paths from egocentric images for autonomous vehicles. Our generative model comprises two neural networks: feature extraction network (FEN) and path generation network (PGN). The FEN extracts meaningful features from an egocentric image, whereas the PGN generates multiple paths from the features, given a driving intention and speed. To ensure that the paths generated are plausible and consistent with the intention, we introduce an attentive discriminator and train it with the PGN under a generative adversarial network framework. Furthermore, we devise an interaction model between the positions in the paths and the intentions hidden in the positions and design a novel PGN architecture that reflects the interaction model for improving the accuracy and diversity of the generated paths. Finally, we introduce ETRIDriving, a dataset for autonomous driving, in which the recorded sensor data are labeled with discrete high-level driving actions, and demonstrate the state-of-the-art performance of the proposed model on ETRIDriving in terms of accuracy and diversity.

ShareIt: An Application Sharing System using Window Capturing and Multicast under Heterogeneous Window Systems

  • Jung, Jin-H.;Park, Hyun, J.;Yang, Hyun-S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.99-104
    • /
    • 1998
  • Application sharing is the ability to use existing applications, such as Excel or MS-Word, during a group session without modification. In this paper, we present the design and implementation of an application sharing system, called ShareIt, which enable users to share arbitrary MS-Windows applications under the Win 3.1/95/NT and X window system, and evaluation of the system performance. To share an application, the image of the application window is captured and transmitted to other sites. With the use of the window capturing method, ShareIt allows any MS-Windows application to be shared regardless of not only the window systems but also the version-up of window systems.

  • PDF

Competitiveness Analysis for Artificial Intelligence Technology through Patent Analysis (특허분석을 통한 인공지능 기술 분야 경쟁력 분석: 특허 시장성과 기술력 질적 분석을 중심으로)

  • Kwak, Hyun;Lee, Seongwon
    • The Journal of Information Systems
    • /
    • v.28 no.3
    • /
    • pp.141-158
    • /
    • 2019
  • Purpose Artificial Intelligence (AI) is a core technology, leading the 4th industrial revolution. This study aims to diagnose the Korean's national competitiveness for AI technologies through patent analyses. Design/methodology/approach In this study, KIWEE and Derwent Innovation databases were used as data source of patents. we extracted 10,510 AI patents data with keywords and classified them into 15 subcategories of AI technology. We executed patent analyses for activity index, patent intensity index, technology strength, and patent family size and diagnosed Korea's national competitiveness in AI industry. Findings The results showed that Korea is less competitive than the United States and Japan in AI industry. However, patent amount has increased since 2010, which is encouraging result. This study has implication on the need for human and R&D investment in AI industry.

Research Trends of Ultra-reliable and Low-latency Machine Learning-based Wireless Communication Technology (기계학습기반 초신뢰·저지연 무선통신기술 연구동향)

  • Lee, H.;Kwon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.93-105
    • /
    • 2019
  • This study emphasizes the importance of the newly added Ultra-Reliable and Low-Latency Communications (URLLC) service as an important evolutionary step for 5G mobile communication, and proposes a remedial application. We analyze the requirements for the application of 5G mobile communication technology in high-precision vertical industries and applications, introduce the 5G URLLC design principles and standards of 3GPP, and summarize the current state of applied artificial intelligence technology in wireless communication. Additionally, we summarize the current state of research on ultra-reliable and low-latency machine learning-based wireless communication technology for application in ultra-high-precision vertical industries and applications. Furthermore, we discuss the technological direction of artificial intelligence technology for URLLC wireless communication.

An Analysis of 'Related Learning Elements' Reflected in Textbooks (<인공지능 수학> 교과서의 '관련 학습 요소' 반영 내용 분석)

  • Kwon, Oh Nam;Lee, Kyungwon;Oh, Se Jun;Park, Jung Sook
    • Communications of Mathematical Education
    • /
    • v.35 no.4
    • /
    • pp.445-473
    • /
    • 2021
  • The purpose of this study is to derive implications for the design of the next curriculum by analyzing the textbooks designed as a new subject in the 2015 revised curriculum. In the mathematics curriculum documents of , 'related learning elements' are presented instead of 'learning elements'. 'Related learning elements' are defined as mathematical concepts or principles that can be used in the context of artificial intelligence, but there are no specific restrictions on the amount and scope of dealing with 'related learning elements'. Accordingly, the aspects of 'related learning elements' reflected in the textbooks were analyzed focusing on the textbook format, the amount and scope of contents, and the ways of using technological tools. There were differences in the format of describing 'related learning elements' in the textbook by textbook and the amount and scope of handling mathematics concepts. Although similar technological tools were dealt with in each textbook so that 'related learning elements' could be used in the context of artificial intelligence, the focus was on computations and interpretation of results. In order to fully reflect the intention of the curriculum in textbooks, a systematic discussion on 'related learning elements' will be necessary. Additionally, in order for students to experience the use of mathematics in artificial intelligence, substantialized activities that can set and solve problems using technological tools should be included in textbooks.

Artificial Intelligence (AI)-based Deep Excavation Designed Program

  • Yoo, Chungsik;Aizaz, Haider Syed;Abbas, Qaisar;Yang, Jaewon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.277-292
    • /
    • 2018
  • This paper presents the development and implementation of an artificial intelligence (AI)-based deep excavation induced wall and ground displacements and wall support member forces prediction program (ANN-EXCAV). The program has been developed in a C# environment by using the well-known AI technique artificial neural network (ANN). Program used ANN to predict the induced displacement, groundwater drawdown and wall and support member forces parameters for deep excavation project and run the stability check by comparing predict values to the calculated allowable values. Generalised ANNs were trained to predict the said parameters through databases generated by numerical analysis for cases that represented real field conditions. A practical example to run the ANN-EXCAV is illustrated in this paper. Results indicate that the program efficiently performed the calculations with a considerable accuracy, so it can be handy and robust tool for preliminary design of wall and support members for deep excavation project.

Sign Language Translation Using Deep Convolutional Neural Networks

  • Abiyev, Rahib H.;Arslan, Murat;Idoko, John Bush
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.631-653
    • /
    • 2020
  • Sign language is a natural, visually oriented and non-verbal communication channel between people that facilitates communication through facial/bodily expressions, postures and a set of gestures. It is basically used for communication with people who are deaf or hard of hearing. In order to understand such communication quickly and accurately, the design of a successful sign language translation system is considered in this paper. The proposed system includes object detection and classification stages. Firstly, Single Shot Multi Box Detection (SSD) architecture is utilized for hand detection, then a deep learning structure based on the Inception v3 plus Support Vector Machine (SVM) that combines feature extraction and classification stages is proposed to constructively translate the detected hand gestures. A sign language fingerspelling dataset is used for the design of the proposed model. The obtained results and comparative analysis demonstrate the efficiency of using the proposed hybrid structure in sign language translation.

A Case Study on the Recommendation Services for Customized Fashion Styles based on Artificial Intelligence (인공지능에 의한 개인 맞춤 패션 스타일 추천 서비스 사례 연구)

  • An, Hyosun;Kwon, Suehee;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.349-360
    • /
    • 2019
  • This study analyzes the trends of recommendation services for customized fashion styles in relation to artificial intelligence. To achieve this goal, the study examined filtering technologies of collaborative, content based, and deep-learning as well as analyzed the characteristics of recommendation services in the users' purchasing process. The results of this study showed that the most universal recommendation technology is collaborative filtering. Collaborative filtering was shown to allow intuitive searching of similar fashion styles in the cognition of need stage, and appeared to be useful in comparing prices but not suitable for innovative customers who pursue early trends. Second, content based filtering was shown to utilize body shape as a key personal profile item in order to reduce the possibility of failure when selecting sizes online, which has limits to being able to wear the product beforehand. Third, fashion style recommendations applied with deep-learning intervene with all user processes of buying products online that was also confirmed to penetrate into the creative area of image tag services, virtual reality services, clothes wearing fit evaluation services, and individually customized design services.

Design of Artificial Intelligence Education Program for Elementary School Students based on Localized Public Data (지역화 공공데이터 기반 초등학생 인공지능 교육 프로그램 설계)

  • Ko, EunJung;Kim, BomSol;Oh, JeongCheol;Kim, JungHoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.1-6
    • /
    • 2021
  • This study designed an artificial intelligence education program using localized public data as an educational method for improving computational thinking in elementary school students. Program design and development was carried out based on the results of pre-requisite analysis on elementary school students according to the ADDIE model. Based on localized public data, the program was organized to learn the principles of artificial intelligence by utilizing "Machine Learning for Kids" and "Scratch" and to solve problems and improve computational thinking skills through abstracting public data for purpose.Through subsequent research, it is necessary to put this education program into the field and verify the change in students' computational thinking as a result.

  • PDF

A Study on the Implementation Method of Artificial Intelligence Shipboard Combat System (인공지능 함정전투체계 구현 방안에 관한 연구)

  • Kwon, Pan Gum;Jang, Kyoung Sun;Kim, Seung Woo;Kim, Jun Young;Yun, Won Hyuk;Rhee, Kye Jin
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.123-135
    • /
    • 2020
  • Since AlphaGo's Match in 2016, there has been a growing calls for artificial intelligence applications in various industries, and research related to it has been actively conducted. The same is true in the military field, and since there has been no weapon system with artificial intelligence so far, effort to implement it are posing a challenge. Meanwhile, AlphaGo Zero, which beat AlphaGo, showed that artificial intelligence's self-training data-based approach can lead to better results than the knowledge-based approach by humans. Taking this point into consideration, this paper proposes to apply Reinforcement Learning, which is the basis of AlphaGo Zero, to the Shipboard Combat System or Combat Management System. This is how an artificial intelligence application to the Shipboard Combat System or Combat Management System that allows the optimal tactical assist with a constant win rate to be recommended to the user, that is, the commanding officer and operation personnel. To this end, the definition of the combat performance of the system, the design plan for the Shipboard Combat System, the mapping with the real system, and the training system are presented to smoothly apply the current operations.