• Title/Summary/Keyword: artificial intelligence design

Search Result 773, Processing Time 0.028 seconds

A Research on 3D Texture Production Using Artificial Intelligence Softwear

  • Ke Ma;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.178-184
    • /
    • 2023
  • AI image generation technology has become a popular research direction in the field of AI, which is widely used in the field of digital art and conceptual design, and can also be used in the process of 3D texture mapping. This paper introduces the production process of 3D texture mapping using AI image technology, and discusses whether it can be used as a new way of 3D texture mapping to enrich the 3D texture mapping production process. Two AI deep learning models, Stable Diffusion and Midjourney, were combined to generate high-quality AI textures. Finally, the lmage to material function of substance 3D Sampler was used to convert the AI-generated textures into PBR 3D texture maps. And applied in 3D environment. This study shows that 3D texture maps generated by AI image generation technology can be used in 3D environment, which not only has short production time and high production efficiency, but also has rich changes in map styles, which can be quickly adjusted and modified according to the design scheme. However, some AI texture maps need to be manually modified before they can be used. With the continuous development of AI technology, there will be great potential for further development and innovation of AI-generated image technology in the 3D content production process in the future.

Innovation and Challenges of Urban Creative Products in Digital Media Art - Tourist cities in China for example

  • Ma Xiaoyu;Lee Jaewoo
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.175-181
    • /
    • 2024
  • The paper examines the impact of digital media art on urban creative products, analyzing opportunities and challenges in the digital era. It emphasizes the development of urban cultural and creative products, highlighting their significance and future growth potential. The digital media era provides unprecedented innovation opportunities, utilizing advanced tools for efficient design, production, and marketing. Trends like personalization, customization, AI, and big data offer new expressions and market prospects. Cultural products evolve in design, marketing, and sales channels due to digital media, with tools like social media and e-commerce platforms opening new promotion avenues. Case studies illustrate digital media's role in driving innovation and enhancing user experiences. The paper addresses challenges in market competition, copyright, and technological renewal, while recognizing opportunities from AI and big data. The creative industries must adapt and innovate to remain relevant. Looking ahead, urban creative products will evolve under digitalization, relying on digital means to attract consumers and enhance brand value. Cultural products, beyond economic entities, disseminate urban culture and creative spirit. In the digital era, urban creative products demonstrate potential and necessity, prompting a reevaluation of digital technology's role. Through continuous innovation, this field contributes to cultural and economic levels, impacting urban characteristics and heritage. Urban creative products play an increasingly vital role in the global cultural and creative economy.

A Study on Methodology for Standardized Platform Design to Build Network Security Infrastructure (네트워크 보안 인프라 구성을 위한 표준화된 플랫폼 디자인 방법론에 관한 연구)

  • Seo, Woo-Seok;Park, Jae-Pyo;Jun, Moon-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.203-211
    • /
    • 2012
  • Network security infrastructure is constantly developing based on the combination and blending of various types of devices. From the form of distributed control, the phased defense policy such as fire walls, virtual private communication network, invasion prevention system, invasion detection system, corporate security management, and TSM (Telebiometrics System Mechanism), now it consolidates security devices and solutions to be developed to the step of concentration and artificial intelligence. Therefore, this article suggests network security infrastructure design types concentrating security devices and solutions as platform types and provides network security infrastructure design selecting methodology, the foundational data to standardize platform design according to each situation so as to propose methodology that can realize and build the design which is readily applied and realized in the field and also can minimize the problems by controlling the interferences from invasion.

Interaction-based mobile UI design utilizing Smart Media Augmented Reality (스마트 미디어 증강현실을 활용하는 인터랙션 기반의 모바일 UI 디자인)

  • Jung, Suk-Ho;Ryu, Seuc-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.311-316
    • /
    • 2019
  • The mobile game environment is rapidly expanding with AR (augmented reality) technology along with artificial intelligence. In particular, AR (Augmented Reality) technology is a field of VR (Virtual Reality), which is a technology that shows a mixture of virtual information and images in a real environment. Recently, research on mobile UI design based on the interaction based on the augmented reality technology has become important at the point when various utilization methods are suggested based on understanding of contents. There are still some issues in terms of whether the consumer can utilize it in various ways, unlike the developed supply system. In this paper, we present an example of mobile UI design based on interaction based on smart media augmented reality through previous study and literature study of smart augmented reality to solve problem UI issues based on background theory.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities (비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계)

  • Baek, Su-Jin;Shin, Yoon-Hee
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • With the advent of the 4th Industrial Revolution, AI utilization capabilities are being emphasized in various industries, but AI education design and curriculum research as universal education is currently lacking. This study offers a design for universal AI education to further cultivate its use in universities. For the AI basic education design, a questionnaire was conducted for experts three times, and the reliability of the derived design contents was verified by reflecting the results. As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived were data structure understanding and processing, visualization, word cloud, public data utilization, and machine learning concept understanding and utilization. The educational design content derived through this study is expected to increase the value of competency-centered AI universal education in the future.

A Study on the Priority of RoboAdvisor Selection Factors: From the Perspective of Analyzing Differences between Users and Providers Using AHP (로보어드바이저 선정요인의 우선순위에 관한 연구: AHP를 이용한 사용자와 제공자의 차이분석 관점으로)

  • Young Woong Woo;Jae In Oh;Yun Hi Chang
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.145-162
    • /
    • 2023
  • Asset management is a complex and difficult field that requires insight into numerous variables and even human psychology. Thus, it has traditionally been the domain of professionals, and these services have been expensive to obtain. Changes are taking place in these markets, and the driving force is the digital revolution, so-called the fourth industrial revolution. Among them, the Robo-Advisor service using artificial intelligence technology is the highlight. The reason is that it is possible to popularize investment advisory services with convenient accessibility and low cost. This study aims to clarify what factors are critically important when selecting robo-advisors for service users and providers in Korea, and what perception differences exist in the selection factors between user and provider groups. The framework of the study was based on the marketing mix 4C model, and the design and analysis of the model used Delphi survey and AHP. Through the study design, 4 main criteria and 15 sub-criteria were derived, and the findings of the study are as follows. First, the importance of the four main criteria was in the order of customer needs > customer convenience > customer cost > customer communication for both groups. Second, looking at the 15 sub-criteria, it was found that investment purpose coverage, investment propensity coverage, fee level and accessibility factors were the most important. Third, when comparing between groups, the user group found that the fee level and accessibility factors were the most important, and the provider group recognized the investment purpose coverage and investment propensity coverage factors as important. This study derived useful implications in practice. First, when designing for the spread of the robo-advisor service, the basis for constructing a user-oriented system was prepared by considering the priority of importance according to the weight difference between the four main criteria and the 15 sub-criteria. In addition, the difference in priority of each sub-criteria shown in the group comparison and the cause of the sub-criteria with large weight differences were identified. In addition, it was suggested that it is very important to form a consensus to resolve the difference in perception of factors between those in charge of strategy and marketing and system development within the provider group. Academically, it is meaningful in that it is an early study that presented various perspectives and perspectives by deriving a number of robo-advisor selection factors. Through the findings of this study, it is expected that a successful user-oriented robo-advisor system can be built and spread in Korea to help users.

A Case Study of Bandi&Luni's Bookstore Using an Online to Offline(O2O) Service Design (O2O(Online to Offline) 서비스 디자인을 활용한 반디앤루니스 서점에 대한 사례연구)

  • Lee, Sangshik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • This Study Focuses on the Customer Experience Story of Bandi&Luni's Centum City branch which Offers the Different Service Concept on the Competitive Book Selling Market. Bandi&Luni's Stands as one of the Largest Bookstore Chains that has 14 Offline Bookstores and an Online Bookstore Shop. The Purpose of this Study takes Lessons from the Unique Practices and Efforts of Bandi&Lunis's Online-to-Offline(O2O) Service and Service Design. In Order to Achieve this Propose, we Investigated the History, Service Concept, Value, and Performance of Bandi&Luni's from a Variety of sources and Reviewed the Previous Literatures of O2O Service and Service Design. In order to Offer Better Customer Experience the Service should be Designed from Customer's View and be Delivered through the Lifecycle of Customers. In a era of Big Data, IOT(internet of things), AI(artificial intelligence), The Service Design Innovation using Information and Communication Technology will be needed in order to Break down the Boundaries Between Online and Offline.

An Approach for Development of Academia-Industrial Cooperation and Design Education-Centered Creative Engineering Education (산학협력과 설계 교육 중심의 창의적 공학교육 발전 방안)

  • Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • In the era of the 4th Industrial Revolution, the necessity of training advanced engineering personnel with convergent creativity to handle technologies such as artificial intelligence, big data, and the internet of things (IoT) is increasing. In this paper, a new approach of engineering education based on academia-industrial cooperation and design-centered teaching technique for the students who need to learn practicable engineering skill with convergent creativity for the fourth industrial age is presented. It analyzes the strengths and weaknesses of the existing engineering education innovation activities, presents the practical necessities based on the experience of the educational system and the requirements of the educational environment, and analyzes the existing activities and the new roles. In particular, we discuss how to combine student-centered teaching methodology for effective design education, which is a key element of innovative engineering education. Most of the presented methods are verified by the authors' needs and effects in the education field.

Design and Implementation of Vehicle Control Network Using WiFi Network System (WiFi 네트워크 시스템을 활용한 차량 관제용 네트워크의 설계 및 구현)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.632-637
    • /
    • 2019
  • Recent researches on autonomous driving of vehicles are becoming very active, and it is a trend to assist safe driving and improve driver's convenience. Autonomous vehicles are required to combine artificial intelligence, image recognition capability, and Internet communication between objects. Because mobile telecommunication networks have limitations in their processing, they can be easily implemented and scale using an easily expandable Wi-Fi network. We propose a wireless design method to construct such a vehicle control network. We propose the arrangement of AP and the software configuration method to minimize loss of data transmission / reception of mobile terminal. Through the design of the proposed network system, the communication performance of the moving vehicle can be dramatically increased. We also verify the packet structure of GPS, video, voice, and data communication that can be used for the vehicle through experiments on the movement of various terminal devices. This wireless design technology can be extended to various general purpose wireless networks such as 2.4GHz, 5GHz and 10GHz Wi-Fi. It is also possible to link wireless intelligent road network with autonomous driving.