• Title/Summary/Keyword: artificial intelligence design

Search Result 773, Processing Time 0.025 seconds

A Study on the Development of integrated Process Safety Management System based on Artificial Intelligence (AI) (인공지능(AI) 기반 통합 공정안전관리 시스템 개발에 관한 연구)

  • KyungHyun Lee;RackJune Baek;WooSu Kim;HeeJeong Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.403-409
    • /
    • 2024
  • In this paper, the guidelines for the design of an Artificial Intelligence(AI) based Integrated Process Safety Management(PSM) system to enhance workplace safety using data from process safety reports submitted by hazardous and risky facility operators in accordance with the Occupational Safety and Health Act is proposed. The system composed of the proposed guidelines is to be implemented separately by individual facility operators and specialized process safety management agencies for single or multiple workplaces. It is structured with key components and stages, including data collection and preprocessing, expansion and segmentation, labeling, and the construction of training datasets. It enables the collection of process operation data and change approval data from various processes, allowing potential fault prediction and maintenance planning through the analysis of all data generated in workplace operations, thereby supporting decision-making during process operation. Moreover, it offers utility and effectiveness in time and cost savings, detection and prediction of various risk factors, including human errors, and continuous model improvement through the use of accurate and reliable training data and specialized datasets. Through this approach, it becomes possible to enhance workplace safety and prevent accidents.

Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System (진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구)

  • Kim, Hyun-Su;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.

A Study on Artificial Intelligence Education Design for Business Major Students

  • PARK, So-Hyun;SUH, Eung-Kyo
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.8
    • /
    • pp.21-32
    • /
    • 2021
  • Purpose: With the advent of the era of the 4th industrial revolution, called a new technological revolution, the necessity of fostering future talents equipped with AI utilization capabilities is emerging. However, there is a lack of research on AI education design and competency-based education curriculum as education for business major. The purpose of this study is to design AI education to cultivate competency-oriented AI literacy for business major in universities. Research design, data and methodology: For the design of AI basic education in business major, three expert Delphi surveys were conducted, and a demand analysis and specialization strategy were established, and the reliability of the derived design contents was verified by reflecting the results. Results: As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived from this were data structure understanding and processing, visualization, web scraping, web crawling, public data utilization, and concept of machine learning and application. Conclusions: The educational design content derived through this study is expected to help establish the direction of competency-centered AI education in the future and increase the necessity and value of AI education by utilizing it based on the major field.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Hospital System Model for Personalized Medical Service (개인 맞춤형 의료서비스를 위한 병원시스템 모델)

  • Ahn, Yoon-Ae;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.77-84
    • /
    • 2017
  • With the entry into the aging society, we are increasingly interested in wellness, and personalized medical services through artificial intelligence are expanding. In order to provide personalized medical services, it is difficult to provide accurate medical analysis services only with the existing hospital system components PM / PA, OCS, EMR, PACS, and LIS. Therefore, it is necessary to present the hospital system model and the construction plan suitable for personalized medical service. Currently, some medical cloud services and artificial intelligence diagnosis services using Watson are being introduced in domestic. However, there are not many examples of systematic hospital system construction. Therefore, this paper proposes a hospital system model suitable for personalized medical service. To do this, we design a model that integrates medical big data construction and AI medical analysis system into the existing hospital system components, and suggest development plan of each module. The proposed model is meaningful as a basic research that provides guidelines for the construction of new hospital system in the future.

A Comparative Study of the Use of Intelligent Personal Assistant Services Experiences: Siri, Google Assistant, Bixby (지능형 개인비서 서비스의 사용경험 비교 연구: 시리, 구글어시스턴트, 빅스비를 중심으로)

  • Yoo, Cho-Rong;Kim, Song-Hyun;Kim, Jin-Woo
    • Science of Emotion and Sensibility
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2020
  • This study compares and analyzes user experiences of intelligent personal assistant services based on the evaluation criteria of human-computer interaction to explore positive elements of user experiences and factors that could be improved. The research was conducted on Apple's Siri, Google's Google Associate, and Samsung's Bixby, which is presently the smartest personal assistant service on the market. The research method was to compare and analyze the concepts and characteristics of the current services through a literature review and by interviewing seven UI/UX design experts for the second 2 weeks using contextual inquiry. The interview reorganized Peter Morville's user experience honeycomb, reducing his seven usability principles down to five, asking questions about usability, convenience, visual attractiveness, reliability, and satisfaction. On the basis of the reconfigured usability principle, the assessment was conducted on the basis of the assessment timing and the system usability scale. This study is meaningful in that it analyzed the user experience of artificial intelligence personal assistant services both quantitatively and qualitatively.

A Research on Blockchain-based Copyright Protection for Computational Creativity (컴퓨터적 창의력을 위한 블록체인 기반 저작권 보호 연구)

  • Lee, Eun Mi
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.23-29
    • /
    • 2018
  • Computational creativity is a field of artificial intelligence research to replicate creativity of human beings, creating works in various fields or helping human authors. The copyright of works produced by computational creativity has not been established in most countries yet, however, there will be the need for systems to protect the copyrights with the development of the technology in the future. In this paper, we propose a copyright protection system based on blockchain technology that protects the copyright of various contributors contributing to the creation of computer creative creativity, and transparently and safely records the contribution of copyrighted works. The proposed system records the contribution of all related works from the machine learning of computer creativity to the creation of the final work on the blockchain so that it is possible to establish quantitative evaluation criteria for the copyright when the future copyright law system is revised.

A Design of Effective NPC AI Patterns Using the Theory of 'Flow' and FSM in the Adventure Game (어드벤처 게임에서 몰입이론과 FSM을 이용한 효과적인 NPC AI 패턴 설계)

  • Oh, Se-Woong;Kang, Hee-Min;Cho, Young-Jin;Lim, Man-Sik;Kim, Sang-Muk;Lee, Jong-Beom;Sin, Ko-Eun;Lee, Ji-Hoon;Kang, Myung-Ju;Park, Chan-Il;Lee, Jong-Won;Oh, Hyoun-Ju;Kim, Sang-Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.297-301
    • /
    • 2014
  • 게임에는 많은 종류의 장르가 있다. 어떤 장르의 게임이 되었건 플레이어와 많은 상호작용을 하는 A.I는 게임에 있어 중요한 요소 이며 어드벤처 게임(Adventure Game) 장르도 예외는 아니다. A.I(Artificial Intelligence)I의 행동이나 상황에 따른 플레이어와의 상호작용은 게임에 있어 플레이어에게 몰입감을 주며 게임을 좀 더 현실감 있게 해주는 게임의 수많은 요소 중 하나다. 본 논문에서는 FSM(Finite-State Machine) 기법을 사용하여 어드벤처 게임에서플레이어에게 '몰입'을 유발 시키는 방법으로 FSM 기법의 NPC(None-Player Character) A.I 패턴을 디자인을 통해 플레이어의 '몰입'을 유발 하였다.

  • PDF

A Study on Basalization of the Classification in Mountain Ginseng and Plain Ginseng Images in Artificial Intelligence Technology for the Detection of Illegal Mountain Ginseng (불법 산양삼 검출을 위한 인공지능 기술에서의 산양삼과 인삼 이미지의 분류 기저화 연구)

  • Park, Soo-Kyoung;Na, Hojun;Kim, Ji-Hye
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.209-225
    • /
    • 2020
  • This study tried to establish a base level for the form of ginseng in order to prevent fraud in which novice consumers, who have no information on ginseng and mountain ginseng, regard ginseng as mountain ginseng. To that end, researchers designed a service design in which when a consumer takes a picture of ginseng with an APP dedicated to a smartphone, the photo is sent remotely and the determined results are sent to the consumer based on machine learning data. In order to minimize the difference between the data set in the research process and the background color, location, size, illumination, and color temperature of the mountain ginseng when consumers took pictures through their smartphones, the filming box exclusively for consumers was designed. Accordingly, the collection of mountain ginseng samples was made under the same controlled environment and setting as the designed box. This resulted in a 100% predicted probability from the CNN(VGG16) model using a sample that was about one-tenth less than widley required in machine learning.

Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Zandi, Yousef;Dehghani, Davoud;Bahadori, Alireza;Shariati, Ali;Trung, Nguyen Thoi;Salih, Musab N.A.;Poi-Ngian, Shek
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.319-332
    • /
    • 2019
  • This study is aimed to predict the behaviour of channel shear connectors in composite floor systems at different temperatures. For this purpose, a soft computing approach is adopted. Two novel intelligence methods, including an Extreme Learning Machine (ELM) and a Genetic Programming (GP), are developed. In order to generate the required data for the intelligence methods, several push-out tests were conducted on various channel connectors at different temperatures. The dimension of the channel connectors, temperature, and slip are considered as the inputs of the models, and the strength of the connector is predicted as the output. Next, the performance of the ELM and GP is evaluated by developing an Artificial Neural Network (ANN). Finally, the performance of the ELM, GP, and ANN is compared with each other. Results show that ELM is capable of achieving superior performance indices in comparison with GP and ANN in the case of load prediction. Also, it is found that ELM is not only a very fast algorithm but also a more reliable model.