• Title/Summary/Keyword: artificial intelligence design

Search Result 773, Processing Time 0.032 seconds

A Study on the Dynamic Image Drawing Part Information Recognition using Artificial Intelligence (인공지능기법을 이용한 동적 이미지 도면 부품정보 인식에 관한 연구)

  • Lee Joo-Sang;Kang Sung-In;Lee Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.449-453
    • /
    • 2006
  • This paper wishes to present way that can take advantage of parts information of image drawing for efficient maintenance management of facilities efficiently. Information for parts that compose facilities to facilities design drawing has been expressed, and legend character has been written to divide each parts. This paper applies Artificial Intelligence techniques for legend character cognition of image drawing. Finally, apply artificial intelligence techniques to drawing management system to evaluate efficiency of method that propose in this paper that see.

Strategy Design to Protect Personal Information on Fake News based on Bigdata and Artificial Intelligence

  • Kang, Jangmook;Lee, Sangwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • The emergence of new IT technologies and convergence industries, such as artificial intelligence, bigdata and the Internet of Things, is another chance for South Korea, which has established itself as one of the world's top IT powerhouses. On the other hand, however, privacy concerns that may arise in the process of using such technologies raise the task of harmonizing the development of new industries and the protection of personal information at the same time. In response, the government clearly presented the criteria for deidentifiable measures of personal information and the scope of use of deidentifiable information needed to ensure that bigdata can be safely utilized within the framework of the current Personal Information Protection Act. It strives to promote corporate investment and industrial development by removing them and to ensure that the protection of the people's personal information and human rights is not neglected. This study discusses the strategy of deidentifying personal information protection based on the analysis of fake news. Using the strategies derived from this study, it is assumed that deidentification information that is appropriate for deidentification measures is not personal information and can therefore be used for analysis of big data. By doing so, deidentification information can be safely utilized and managed through administrative and technical safeguards to prevent re-identification, considering the possibility of re-identification due to technology development and data growth.

A Study on the Path-Creative Characteristics of AI Policy (인공지능정책의 경로창조적 특성에 관한 연구 : 신제도주의의 경로 변화 이론을 기반으로)

  • Jung, Sung Young;Koh, Soon Ju
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.93-115
    • /
    • 2021
  • Various policy declarations and institutional experiments involving artificial intelligence are being made in most countries. Depending on how the artificial intelligence policy changes, the role of the government, the scope of the policy, and the policy means used may vary, which can lead to the success or failure of the policy. This study proposed a perspective on AI(Artificial Intelligence) in policy research, investigated the theory of path change, and derived the characteristics of path change in AI policy. Since AI policy is related to a wide range of policy areas and the policy making is at the start points, this study is based on the neo-institutional path theory about the types of institutional changes. As a result of this study, AI policy showed the characteristics of path creation, and in detail presented the conflict relationship between institutional design elements, the scalability of policy areas, policy stratification and policy mix, the top policy characteristics transcending the law, and the experiment for regulatory innovation. Since AI can also be used as a key tool for policy innovation in the future, research on the path and characteristics of AI policy will provide a new direction and approach to government policy or institutional innovation seeking digital transformation.

Deep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cells

  • Xu, Peng;Qin, Xiao;Zhu, Honglei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.259-272
    • /
    • 2022
  • The branch of electronics that uses an organic solar cell or conductive organic polymers in order to yield electricity from sunlight is called photovoltaic. Regarding this crucial issue, an artificial intelligence-based predictor is presented to investigate the vibrational behavior of the organic solar cell. In addition, the generalized differential quadrature method (GDQM) is utilized to extract the results. The validation examination is done to confirm the credibility of the results. Then, the deep neural network with fully connected layers (DNN-FCL) is trained by means of Adam optimization on the dataset whose members are the vibration response of the design-points. By determining the optimum values for the biases along with weights of DNN-FCL, one can predict the vibrational characteristics of any organic solar cell by knowing the properties defined as the inputs of the mentioned DNN. To assess the ability of the proposed artificial intelligence-based model in prediction of the vibrational response of the organic solar cell, the authors monitored the mean squared error in different steps of the training the DNN-FCL and they observed that the convergency of the results is excellent.

A Study on Tower Modeling for Artificial Intelligence Training in Artifact Restoration

  • Byong-Kwon Lee;Young-Chae Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.27-34
    • /
    • 2023
  • This paper studied the 3D modeling process for the restoration of the 'Three-story Stone Pagoda of Bulguksa Temple in Gyeongju', a stone pagoda from the Unified Silla Period, using artificial intelligence (AI). Existing 3D modeling methods generate numerous verts and faces, which takes a considerable amount of time for AI learning. Accordingly, a method of performing more efficient 3D modeling by lowering the number of verts and faces is required. To this end, in this study, the structure of the stone pagoda was deeply analyzed and a modeling method optimized for AI learning was studied. In addition, it is meaningful to propose a new 3D modeling methodology for the restoration of stone pagodas in Korea and to secure a data set necessary for artificial intelligence learning.

Aqua-Aware: Underwater Optical Wirelesss Communication enabled Compact Sensor Node, Temperature and Pressure Monitoring for Small Moblie Platforms

  • Maaz Salman;Javad Balboli;Ramavath Prasad Naik;Wan-Young Chung;Jong-Jin Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.50-61
    • /
    • 2022
  • This work demonstrates the design and evaluation of Aqua-Aware, a lightweight miniaturized light emitting diode (LED) based underwater compact sensor node which is used to obtain different characteristics of the underwater environment. Two optical sensor nodes have been designed, developed, and evaluated for a short and medium link range called as Aqua-Aware short range (AASR) and Aqua-Aware medium range (AAMR), respectively. The hardware and software implementation of proposed sensor node, algorithms, and trade-offs have been discussed in this paper. The underwater environment is emulated by introducing different turbulence effects such as air bubbles, waves and turbidity in a 4-m water tank. In clear water, the Aqua-Aware achieved a data rate of 0.2 Mbps at communication link up to 2-m. The Aqua-Aware was able to achieve 0.2 Mbps in a turbid water of 64 NTU in the presence of moderate water waves and air bubbles within the communication link range of 1.7-m. We have evaluated the luminous intensity, packet success rate and bit error rate performance of the proposed system obtained by varying the various medium characteristics.

Development and Effectiveness of an AI Thinking-based Education Program for Enhancing AI Literacy (인공지능 리터러시 신장을 위한 인공지능 사고 기반 교육 프로그램 개발 및 효과)

  • Lee, Jooyoung;Won, Yongho;Shin, Yoonhee
    • Journal of Engineering Education Research
    • /
    • v.26 no.3
    • /
    • pp.12-19
    • /
    • 2023
  • The purpose of this study is to develop the Artificial Intelligence thinking-based education program for improving AI literacy and verify its effectiveness for beginner. This program consists of 17 sessions, was designed according to the "ABCDE" model and is a project-based program. This program was conducted on 51 first-year middle school students and 36 respondents excluding missing values were analyzed in R language. The effect of this program on ethics, understanding, social competency, execution plan, data literacy, and problem solving of AI literacy is statistically significant and has very large practical significance. According to the result of this study, this program provided learners experiencing Artificial Intelligence education for the first time with Artificial Intelligence concepts and principles, collection and analysis of information, and problem-solving processes through application in real life, and served as an opportunity to enhance AI literacy. In addition, education program to enhance AI literacy should be designed based on AI thinking.

Design of Machine Learning Education Program for Elementary School Students Based on Sound Data (소리 데이터를 활용한 블록 기반의 초등 머신러닝 교육 프로그램 설계)

  • Ko, Seunghwan;Lee, Junho;Moon, Woojong;Kim, Jonghoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.7-11
    • /
    • 2021
  • This study designs block-based machine learning education program using sound data that can be easily applied in elementary schools. The education program designed its goals and directions based on the results of a demand analysis conducted on 70 elementary school teachers in advance according to the ADDIE model. Scratch in Machine Learning for Kids was used for block-based programming, and the education program was designed to discover regularity of data values using sound data, learn the principles of artificial intelligence, and improve computational thinking in the programming process. In a later study, the education program needs to verify what changes there are in attitudes and computational thinking about artificial intelligence.

  • PDF

Analysis of disc cutter replacement based on wear patterns using artificial intelligence classification models

  • Yunhee Kim;Jaewoo Shin;Bumjoo Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.633-645
    • /
    • 2024
  • Disc cutters, used as excavation tools for rocks in a Tunnel Boring Machine (TBM), naturally undergo wear during the tunneling process, involving crushing and cutting through the ground, leading to various wear types. When disc cutters reach their wear limits, they must be replaced at the appropriate time to ensure efficient excavation. General disc cutter life prediction models are typically used during the design phase to predict the total required quantity and replacement locations for construction. However, disc cutters are replaced more frequently during tunneling than initially planned. Unpredictable disc cutter replacements can easily diminish tunneling efficiency, and abnormal wear is a common cause during tunneling in complex ground conditions. This study aims to overcome the limitations of existing disc cutter life prediction models by utilizing machine data generated during tunneling to predict disc cutter wear patterns and determine the need for replacements in real-time. Artificial intelligence classification algorithms, including K-nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Stacking, are employed to assess the need for disc cutter replacement. Binary classification models are developed to predict which disc cutters require replacement, while multi-class classification models are fine-tuned to identify three categories: no replacement required, replacement due to normal wear, and replacement due to abnormal wear during tunneling. The performance of these models is thoroughly assessed, demonstrating that the proposed approach effectively manages disc cutter wear and replacements in shield TBM tunnel projects.