• Title/Summary/Keyword: artificial intelligence algorithms

Search Result 518, Processing Time 0.026 seconds

Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution

  • Ruiz, Christian C.;Caballero, Jose L.;Martinez, Juan H.;Aperador, Willian A.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.257-265
    • /
    • 2020
  • Many failures of concrete structures are related to steel corrosion. For this reason, it is important to recognize how the carbonation can affect the durability of reinforced concrete structures. The repeatability of the carbonation depth measure in a specimen of concrete sprayed with a phenolphthalein solution is consistently low whereby it is necessary to have an impartial method to measure the carbonation depth. This study presents two automatic algorithms to detect the non-carbonated zone in concrete specimens. The first algorithm is based solely on digital processing image (DPI), mainly morphological and threshold techniques. The second algorithm is based on artificial intelligence, more specifically on an array of Kohonen networks, but also using some DPI techniques to refine the results. Moreover, another algorithm was developed with the purpose of measure the carbonation depth from the image obtained previously.

Research on detecting moving targets with an improved Kalman filter algorithm

  • Jia quan Zhou;Wei Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2348-2360
    • /
    • 2023
  • As science and technology evolve, object detection of moving objects has been widely used in the context of machine learning and artificial intelligence. Traditional moving object detection algorithms, however, are characterized by relatively poor real-time performance and low accuracy in detecting moving objects. To tackle this issue, this manuscript proposes a modified Kalman filter algorithm, which aims to expand the equations of the system with the Taylor series first, ignoring the higher order terms of the second order and above, when the nonlinear system is close to the linear form, then it uses standard Kalman filter algorithms to measure the situation of the system. which can not only detect moving objects accurately but also has better real-time performance and can be employed to predict the trajectory of moving objects. Meanwhile, the accuracy and real-time performance of the algorithm were experimentally verified.

Expansion of Product Liability : Applicability of SW and AI (제조물책임 범위의 확장 : SW와 AI의 적용가능성)

  • KIM, Yun-Myung
    • Informatization Policy
    • /
    • v.30 no.1
    • /
    • pp.67-88
    • /
    • 2023
  • The expansion of the scope of product liability is necessary because the industrial environment has changed following the enactment of the Product Liability Act. Unlike human-coded algorithms, artificial intelligence is black-boxed according to machine learning, and even developers cannot explain the results. In particular, since the cause of the problem by artificial intelligence is unknown, the responsibility is unclear, and compensation for victims is not easy. This is because software or artificial intelligence is a non-object, and its productivity is not recognized under the Product Liability Act, which is limited to movable property. As a desperate measure, productivity may be recognized if it is stored or embedded in the medium. However, it is not reasonable to apply differently depending on the medium. The EU revise the product liability guidelines that recognize product liability when artificial intelligence is included. Although compensation for victims is the value pursued by the Product Liability Act, the essence has been overlooked by focusing on productivity. Even if an accident occurs using an artificial intelligence-adopted service, however, it is desirable to present standards according to practical risks instead of unconditionally holding product responsibility.

A Study on Prediction of Baseball Game Based on Linear Regression

  • LEE, Kwang-Keun;HWANG, Seung-Ho
    • Korean Journal of Artificial Intelligence
    • /
    • v.7 no.2
    • /
    • pp.13-17
    • /
    • 2019
  • Currently, the sports market continues to grow every year, and among them, professional baseball's entry income is larger than the rest of the professional league. In sports, strategies are used differently in different situations, and the analysis is based on data to decide which direction to implement. There is a part that a person misses in an analysis, and there is a possibility of a false analysis by subjective judgment. So, if this data analysis is done through artificial intelligence, the objective analysis is possible, and the strategy can be more rationalized, which helps to win the game. The most popular baseball to be applied to artificial intelligence to analyze athletes' strengths and weaknesses and then efficiently establish strategies to ease the competition. The data applied to the experiment were provided on the KBO official website, and the algorithms for forecasting applied linear regression. The results showed that the accuracy was 87%, and the standard error was ±5. Although the results of the experiment were not enough data, it would be possible to effectively use baseball strategies and predict the results of the game if the amount of data and regular data can be applied in the future.

AI Processor Technology Trends (인공지능 프로세서 기술 동향)

  • Kwon, Youngsu
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.121-134
    • /
    • 2018
  • The Von Neumann based architecture of the modern computer has dominated the computing industry for the past 50 years, sparking the digital revolution and propelling us into today's information age. Recent research focus and market trends have shown significant effort toward the advancement and application of artificial intelligence technologies. Although artificial intelligence has been studied for decades since the Turing machine was first introduced, the field has recently emerged into the spotlight thanks to remarkable milestones such as AlexNet-CNN and Alpha-Go, whose neural-network based deep learning methods have achieved a ground-breaking performance superior to existing recognition, classification, and decision algorithms. Unprecedented results in a wide variety of applications (drones, autonomous driving, robots, stock markets, computer vision, voice, and so on) have signaled the beginning of a golden age for artificial intelligence after 40 years of relative dormancy. Algorithmic research continues to progress at a breath-taking pace as evidenced by the rate of new neural networks being announced. However, traditional Von Neumann based architectures have proven to be inadequate in terms of computation power, and inherently inefficient in their processing of vastly parallel computations, which is a characteristic of deep neural networks. Consequently, global conglomerates such as Intel, Huawei, and Google, as well as large domestic corporations and fabless companies are developing dedicated semiconductor chips customized for artificial intelligence computations. The AI Processor Research Laboratory at ETRI is focusing on the research and development of super low-power AI processor chips. In this article, we present the current trends in computation platform, parallel processing, AI processor, and super-threaded AI processor research being conducted at ETRI.

A Study on Application of Reinforcement Learning Algorithm Using Pixel Data (픽셀 데이터를 이용한 강화 학습 알고리즘 적용에 관한 연구)

  • Moon, Saemaro;Choi, Yonglak
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2016
  • Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.

Autonomous-Driving Vehicle Learning Environments using Unity Real-time Engine and End-to-End CNN Approach (유니티 실시간 엔진과 End-to-End CNN 접근법을 이용한 자율주행차 학습환경)

  • Hossain, Sabir;Lee, Deok-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.122-130
    • /
    • 2019
  • Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.

Artificial Intelligence Computing Platform Design for Underwater Localization (수중 위치측정을 위한 인공지능 컴퓨팅 플랫폼 설계)

  • Moon, Ji-Youn;Lee, Young-Pil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.119-124
    • /
    • 2022
  • Successful underwater localization requires a large-scale, parallel computing environment that can be mounted on various underwater robots. Accordingly, we propose a design method for an artificial intelligence computing platform for underwater localization. The proposed platform consists of a total of four hardware modules. Transponder and hydrophone modules transmit and receive sound waves, and the FPGA module rapidly pre-processes the transmitted and received sound wave signals in parallel. Jetson module processes artificial intelligence based algorithms. We performed a sound wave transmission/reception experiment for underwater localization according to distance in an actual underwater environment. As a result, the designed platform was verified.

Measures to Reduce Traffic Accidents in School Zones using Artificial Intelligence

  • Park, Moon-Soo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.162-164
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents within the child protection zone. Efforts are being made to prevent accidents by enacting safety facilities and laws to prevent traffic accidents in the school zone. However, traffic accidents in school zones continue to occur. If the driver can know the situation in the child protection zone in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. Design a LIDAR system that recognizes vehicle speed and pedestrians. Design an LED guidance system that delivers information to drivers without smart devices. We study time series analysis and artificial intelligence algorithms that collect and process pedestrian and vehicle information recognized by cameras and LIDAR. In the artificial intelligence traffic accident prevention system learned by deep learning, before entering the school zone, the school zone information is sent to the driver through the Force Push Service and the school zone information is delivered to the driver on the LED sign. try to reduce accidents.

  • PDF

Cases of Stock Analysis through Artificial Intelligence Using Big Data (빅데이터를 활용한 인공지능을 통한 주식 예측 분석 사례)

  • Choi, Min-gi;Jo, Kwang-ik;Jeon, Min-gi;Choi, hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.303-304
    • /
    • 2021
  • In the 21st century, as we enter the Fourth Industrial Revolution, research in various fields utilizing big data is being conducted, and innovative and useful technologies are constantly emerging in the world. Among several technologies recently in the big data era, among various fields utilizing some algorithms of artificial intelligence, it shines in the field of finance and is used for pin tech, financial fraud detection and risk management, etc., and recently Even in the booming stock market, it is used for investment prediction and investment factor analysis using artificial intelligence algorithm models. In this paper, we plan to investigate various research cases and investigate trends in how they are used in the stock market through artificial intelligence that utilizes big data.

  • PDF