• Title/Summary/Keyword: artificial intelligence algorithm

Search Result 876, Processing Time 0.027 seconds

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A.;Naser, M.Z.
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

Design and Implementation of a Real-Time Product Defect Detection System based on Artificial Intelligence in the Press Process (프레스 공정에서 인공지능기반 실시간 제품 불량탐지 시스템 설계 및 구현)

  • Kim, Dong-Hyun;Lee, Jae-Min;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1144-1151
    • /
    • 2021
  • The pressing process is a compression process in which a product is made by applying force to a heated or unheated material to transform it into the desired shape. Due to the characteristics of press equipment that produces products through continuous compression for a short time, product defects occur continuously, and systems for solving these problems are being developed using various technologies. This paper proposes a real-time defect detection system based on an artificial intelligence algorithm that detects defects. By attaching various sensors to the press device, the relationship between equipment status and defects is defined and collected based on a big data platform. By developing an artificial intelligence algorithm based on the collected data and implementing the developed algorithm using an embedded board, we will show the practicality of the system by applying it to the actual field.

KSB Artificial Intelligence Platform Technology for On-site Application of Artificial Intelligence (인공지능의 현장적용을 위한 KSB 인공지능 플랫폼 기술)

  • Lee, Y.H.;Kang, H.J.;Kim, Y.M.;Kim, T.H.;Ahn, H.Y.;You, T.W.;Lee, H.S.;Lim, W.S.;Kim, H.J.;Pyo, C.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.28-37
    • /
    • 2020
  • Recently, the focus of research interest in artificial intelligence technology has shifted from algorithm development to application domains. Industrial sectors such as smart manufacturing, transportation, and logistics venture beyond automation to pursue digitalization of sites for intelligence. For example, smart manufacturing is realized by connecting manufacturing sites, autonomous reconfiguration, and optimization of manufacturing systems according to customer requirements to respond promptly to market needs. Currently, KSB Convergence Research Department is developing BeeAI-an on-site end-to-end intelligence platform. BeeAI offers end-to-end service pipeline configuration and DevOps technologies that can produce and provide intelligence services needed on-site. We are hopeful that in future, the BeeAI technology will become the base technology at various sites that require automation and intelligence.

Implementation of Algorithm to Write Articles by Stock Robot

  • Sim, Da Hun;Shin, Seung Jung
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.40-47
    • /
    • 2016
  • Journalism robot by using a computer algorithm, while maintaining the precision and reliability of the existing media refers to an article which is automatically created. In this paper, we introduce 'stock robot' of robot journalism which writes securities articles and describe artificial intelligence algorithms in stages. Key steps of stock robot implemented artificial intelligence algorithm through four steps of data collection and storage, key event extraction, article content production, and article production. This research has developed a stock robot that collects and analyzes data on social issues and stock indexes for the last 2 years. In the future, as the algorithm is further developed, it becomes possible to write securities articles quickly and accurately through social issues. It will also provide customized information tailored to the user's preferences.

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

A Radiomics-based Unread Cervical Imaging Classification Algorithm (자궁경부 영상에서의 라디오믹스 기반 판독 불가 영상 분류 알고리즘 연구)

  • Kim, Go Eun;Kim, Young Jae;Ju, Woong;Nam, Kyehyun;Kim, Soonyung;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.241-249
    • /
    • 2021
  • Recently, artificial intelligence for diagnosis system of obstetric diseases have been actively studied. Artificial intelligence diagnostic assist systems, which support medical diagnosis benefits of efficiency and accuracy, may experience problems of poor learning accuracy and reliability when inappropriate images are the model's input data. For this reason, before learning, We proposed an algorithm to exclude unread cervical imaging. 2,000 images of read cervical imaging and 257 images of unread cervical imaging were used for this study. Experiments were conducted based on the statistical method Radiomics to extract feature values of the entire images for classification of unread images from the entire images and to obtain a range of read threshold values. The degree to which brightness, blur, and cervical regions were photographed adequately in the image was determined as classification indicators. We compared the classification performance by learning read cervical imaging classified by the algorithm proposed in this paper and unread cervical imaging for deep learning classification model. We evaluate the classification accuracy for unread Cervical imaging of the algorithm by comparing the performance. Images for the algorithm showed higher accuracy of 91.6% on average. It is expected that the algorithm proposed in this paper will improve reliability by effectively excluding unread cervical imaging and ultimately reducing errors in artificial intelligence diagnosis.

Design of Autonomous Mobile Robot System Based on Artificial Immune Network and Internet (인공 면역망과 인터넷에 의한 자율이동로봇 시스템 설계)

  • Lee, Dong-Je;Lee, Min-Jung;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.522-531
    • /
    • 2001
  • Recently conventional artificial intelligence(AI) approaches have been employed to build action selectors for the autonomous mobile robot(AMR). However, in these approaches, the decision making process to choose an action from multiple competence modules is still an open question. Many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we attempt to construct an action selector for an AMR based on the artificial immune network and internet. The information from vision sensors is used for antibody. We propose a learning method for artificial immune network using evolutionary algorithm to produce antibody automatically. The internet environment for an AMR action selector shows the usefulness of the proposed learning artificial immune network application.

  • PDF

Autonomous Mobile Robots Navigation Using Artificial Immune Networks and Neural Networks (인공 면역망과 신경회로망을 이용한 자율이동로봇 주행)

  • 이동제;김인식;이민중;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.471-481
    • /
    • 2003
  • The acts of biological immune system are similar to the navigation for autonomous mobile robots under dynamically changing environments. In recent years, many researchers have studied navigation algorithms using artificial immune networks. Conventional artificial immune algorithms consist of an obstacle-avoidance behavior and a goal-reaching behavior. To select a proper action, the navigation algorithm should combine the obstacle-avoidance behavior with the goal-reaching behavior. In this paper, the neural network is employed to combine the behaviors. The neural network is trained with the surrounding information. the outputs of the neural network are proper combinational weights of the behaviors in real-time. Also, a velocity control algorithm is constructed with the artificial immune network. Through a simulation study and experimental results for a autonomous mobile robot, we have shown the validity of the proposed navigation algorithm.

Development of Age Classification Deep Learning Algorithm Using Korean Speech (한국어 음성을 이용한 연령 분류 딥러닝 알고리즘 기술 개발)

  • So, Soonwon;You, Sung Min;Kim, Joo Young;An, Hyun Jun;Cho, Baek Hwan;Yook, Sunhyun;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.63-68
    • /
    • 2018
  • In modern society, speech recognition technology is emerging as an important technology for identification in electronic commerce, forensics, law enforcement, and other systems. In this study, we aim to develop an age classification algorithm for extracting only MFCC(Mel Frequency Cepstral Coefficient) expressing the characteristics of speech in Korean and applying it to deep learning technology. The algorithm for extracting the 13th order MFCC from Korean data and constructing a data set, and using the artificial intelligence algorithm, deep artificial neural network, to classify males in their 20s, 30s, and 50s, and females in their 20s, 40s, and 50s. finally, our model confirmed the classification accuracy of 78.6% and 71.9% for males and females, respectively.