• 제목/요약/키워드: artificial image

검색결과 1,413건 처리시간 0.033초

Application of artificial intelligence for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging

  • Yusuke Horiuchi;Toshiaki Hirasawa;Junko Fujisaki
    • Clinical Endoscopy
    • /
    • 제57권1호
    • /
    • pp.11-17
    • /
    • 2024
  • Although magnifying endoscopy with narrow-band imaging is the standard diagnostic test for gastric cancer, diagnosing gastric cancer using this technology requires considerable skill. Artificial intelligence has superior image recognition, and its usefulness in endoscopic image diagnosis has been reported in many cases. The diagnostic performance (accuracy, sensitivity, and specificity) of artificial intelligence using magnifying endoscopy with narrow band still images and videos for gastric cancer was higher than that of expert endoscopists, suggesting the usefulness of artificial intelligence in diagnosing gastric cancer. Histological diagnosis of gastric cancer using artificial intelligence is also promising. However, previous studies on the use of artificial intelligence to diagnose gastric cancer were small-scale; thus, large-scale studies are necessary to examine whether a high diagnostic performance can be achieved. In addition, the diagnosis of gastric cancer using artificial intelligence has not yet become widespread in clinical practice, and further research is necessary. Therefore, in the future, artificial intelligence must be further developed as an instrument, and its diagnostic performance is expected to improve with the accumulation of numerous cases nationwide.

Development of Pattern Classifying System for cDNA-Chip Image Data Analysis

  • Kim, Dae-Wook;Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.838-841
    • /
    • 2005
  • DNA Chip is able to show DNA-Data that includes diseases of sample to User by using complementary characters of DNA. So this paper studied Neural Network algorithm for Image data processing of DNA-chip. DNA chip outputs image data of colors and intensities of lights when some sample DNA is putted on DNA-chip, and we can classify pattern of these image data on user pc environment through artificial neural network and some of image processing algorithms. Ultimate aim is developing of pattern classifying algorithm, simulating this algorithm and so getting information of one's diseases through applying this algorithm. Namely, this paper study artificial neural network algorithm for classifying pattern of image data that is obtained from DNA-chip. And, by using histogram, gradient edge, ANN and learning algorithm, we can analyze and classifying pattern of this DNA-chip image data. so we are able to monitor, and simulating this algorithm.

  • PDF

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

Proposal of AI-based Digital Forensic Evidence Collecting System

  • Jang, Eun-Jin;Shin, Seung-Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권3호
    • /
    • pp.124-129
    • /
    • 2021
  • As the 4th industrial era is in full swing, the public's interest in related technologies such as artificial intelligence, big data, and block chain is increasing. As artificial intelligence technology is used in various industrial fields, the need for research methods incorporating artificial intelligence technology in related fields is also increasing. Evidence collection among digital forensic investigation techniques is a very important procedure in the investigation process that needs to prove a specific person's suspicions. However, there may be cases in which evidence is damaged due to intentional damage to evidence or other physical reasons, and there is a limit to the collection of evidence in this situation. Therefore, this paper we intends to propose an artificial intelligence-based evidence collection system that analyzes numerous image files reported by citizens in real time to visually check the location, user information, and shooting time of the image files. When this system is applied, it is expected that the evidence expected data collected in real time can be actually used as evidence, and it is also expected that the risk area analysis will be possible through big data analysis.

Automated segmentation of concrete images into microstructures: A comparative study

  • Yazdi, Mehran;Sarafrazi, Katayoon
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.315-325
    • /
    • 2014
  • Concrete is an important material in most of civil constructions. Many properties of concrete can be determined through analysis of concrete images. Image segmentation is the first step for the most of these analyses. An automated system for segmentation of concrete images into microstructures using texture analysis is proposed. The performance of five different classifiers has been evaluated and the results show that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of concrete.

인공지능 기반 구글넷 딥러닝과 IoT를 이용한 의류 분류 (Classification of Clothing Using Googlenet Deep Learning and IoT based on Artificial Intelligence)

  • 노순국
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.41-45
    • /
    • 2020
  • 최근 4차 산업혁명 관련 IT기술 중에서 머신러닝과 딥러닝으로 대표되는 인공지능과 사물인터넷은 다양한 연구를 통해 여러 분야에서 우리 실생활에 적용되고 있다. 본 논문에서는 사물인터넷과 객체인식 기술을 활용한 인공지능을 적용하여 의류를 분류하고자 한다. 이를 위해 이미지 데이터셋은 웹캠과 라즈베리파이를 이용하여 의류를 촬영하고, 촬영된 이미지 데이터를 전이학습된 컨벌루션 뉴럴 네트워크 인공지능망인 구글넷에 적용하였다. 의류 이미지 데이터셋은 온전한 이미지 900개와 손상이 있는 이미지 900 그리고 총 1800개를 가지고 상하의 2개의 카테고리로 분류하였다. 분류 측정 결과는 온전한 의류 이미지에서는 약 97.78%의 정확도를 보였다. 결론적으로 이러한 측정결과와 향후 더 많은 이미지 데이터의 보완을 통해 사물인터넷 기반 플랫폼상에서 인공지능망을 활용한 여타 사물들의 객체 인식에 대한 적용 가능성을 확인하였다.

Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI)

  • Cheolhee Lee;Taehoe Koo;Namwook Park;Nakhoon Lim
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.11-19
    • /
    • 2024
  • This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.

인공지능 객체인식에 관한 파라미터 측정 연구 (A Study On Parameter Measurement for Artificial Intelligence Object Recognition)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.15-28
    • /
    • 2019
  • Artificial intelligence is evolving rapidly in the ICT field, smart convergence media system and content industry through the fourth industrial revolution, and it is evolving very rapidly through Big Data. In this paper, we propose a face recognition method based on object recognition based on object recognition through artificial intelligence. In this method, Were experimented and studied through the object recognition technique of artificial intelligence. In the conventional 3D image field, general research on object recognition has been carried out variously, and researches have been conducted on the side effects of visual fatigue and dizziness through 3D image. However, in this study, we tried to solve the problem caused by the quantitative difference between object recognition and object recognition for human factor algorithm that measure visual fatigue through cognitive function, morphological analysis and object recognition. Especially, The new method of computer interaction is presented and the results are shown through experiments.

고속 사진기와 영상처리 기법을 이용한 인공판막의 흐름 분석. (Flow Pattern Analysis of Artificial Valves Using High Speed Camera and Image Processing Technique)

  • 이동혁;김희찬;서수원;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.81-84
    • /
    • 1993
  • Artificial Heart Valve is the one of the most important artificial organ which has been implanted to many patients. The most important problems related to the artificial heart valve prosthesis are thrombosis and hemolysis. Usual method to test against this problem in vivo experiment, which is complex and hard work. Nowadays the request for In vitro Artificial Heart Valve testing system is increasing. Several papers has announced us flow pattern of Artificial Heart Valve is highly correlated with thrombosis and hemolysis. They usually gel flow pattern by LDA, it is also hard work and has narrow measuring region. In this reason we have determined to develop PTV(Particle Tracking Velocimetry). By using High-speed camera and image processing technique, flow pattern could be relatively easily obtained. Parachute and Bileaflet Artificial Heart Valve designed by SNU were testified.

  • PDF