• Title/Summary/Keyword: artificial hand

Search Result 496, Processing Time 0.025 seconds

PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts

  • Armengol-Estape, Jordi;Soares, Felipe;Marimon, Montserrat;Krallinger, Martin
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2019
  • Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step for complex event types such as drug dosage recognition, duration of medical treatments or drug repurposing. Formally, this task is known as named entity recognition (NER), meaning automatically identifying mentions of predefined entities of interest in running text. In the domain of medical texts, for chemical entity recognition (CER), techniques based on hand-crafted rules and graph-based models can provide adequate performance. In the recent years, the field of natural language processing has mainly pivoted to deep learning and state-of-the-art results for most tasks involving natural language are usually obtained with artificial neural networks. Competitive resources for drug name recognition in English medical texts are already available and heavily used, while for other languages such as Spanish these tools, although clearly needed were missing. In this work, we adapt an existing neural NER system, NeuroNER, to the particular domain of Spanish clinical case texts, and extend the neural network to be able to take into account additional features apart from the plain text. NeuroNER can be considered a competitive baseline system for Spanish drug and CER promoted by the Spanish national plan for the advancement of language technologies (Plan TL).

Hybrid Fuzzy Association Structure for Robust Pet Dog Disease Information System

  • Kim, Kwang Baek;Song, Doo Heon;Jun Park, Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.234-240
    • /
    • 2021
  • As the number of pet dog-related businesses is rising rapidly, there is an increasing need for reliable pet dog health information systems for casual pet owners, especially those caring for older dogs. Our goal is to implement a mobile pre-diagnosis system that can provide a first-hand pre-diagnosis and an appropriate coping strategy when the pet owner observes abnormal symptoms. Our previous attempt, which is based on the fuzzy C-means family in inference, performs well when only relevant symptoms are provided for the query, but this assumption is not realistic. Thus, in this paper, we propose a hybrid inference structure that combines fuzzy association memory and a double-layered fuzzy C-means algorithm to infer the probable disease with robustness, even when noisy symptoms are present in the query provided by the user. In the experiment, it is verified that our proposed system is more robust when noisy (irrelevant) input symptoms are provided and the inferred results (probable diseases) are more cohesive than those generated by the single-phase fuzzy C-means inference engine.

Sign2Gloss2Text-based Sign Language Translation with Enhanced Spatial-temporal Information Centered on Sign Language Movement Keypoints (수어 동작 키포인트 중심의 시공간적 정보를 강화한 Sign2Gloss2Text 기반의 수어 번역)

  • Kim, Minchae;Kim, Jungeun;Kim, Ha Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1535-1545
    • /
    • 2022
  • Sign language has completely different meaning depending on the direction of the hand or the change of facial expression even with the same gesture. In this respect, it is crucial to capture the spatial-temporal structure information of each movement. However, sign language translation studies based on Sign2Gloss2Text only convey comprehensive spatial-temporal information about the entire sign language movement. Consequently, detailed information (facial expression, gestures, and etc.) of each movement that is important for sign language translation is not emphasized. Accordingly, in this paper, we propose Spatial-temporal Keypoints Centered Sign2Gloss2Text Translation, named STKC-Sign2 Gloss2Text, to supplement the sequential and semantic information of keypoints which are the core of recognizing and translating sign language. STKC-Sign2Gloss2Text consists of two steps, Spatial Keypoints Embedding, which extracts 121 major keypoints from each image, and Temporal Keypoints Embedding, which emphasizes sequential information using Bi-GRU for extracted keypoints of sign language. The proposed model outperformed all Bilingual Evaluation Understudy(BLEU) scores in Development(DEV) and Testing(TEST) than Sign2Gloss2Text as the baseline, and in particular, it proved the effectiveness of the proposed methodology by achieving 23.19, an improvement of 1.87 based on TEST BLEU-4.

Denoising Traditional Architectural Drawings with Image Generation and Supervised Learning (이미지 생성 및 지도학습을 통한 전통 건축 도면 노이즈 제거)

  • Choi, Nakkwan;Lee, Yongsik;Lee, Seungjae;Yang, Seungjoon
    • Journal of architectural history
    • /
    • v.31 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Traditional wooden buildings deform over time and are vulnerable to fire or earthquakes. Therefore, traditional wooden buildings require continuous management and repair, and securing architectural drawings is essential for repair and restoration. Unlike modernized CAD drawings, traditional wooden building drawings scan and store hand-drawn drawings, and in this process, many noise is included due to damage to the drawing itself. These drawings are digitized, but their utilization is poor due to noise. Difficulties in systematic management of traditional wooden buildings are increasing. Noise removal by existing algorithms has limited drawings that can be applied according to noise characteristics and the performance is not uniform. This study presents deep artificial neural network based noised reduction for architectural drawings. Front/side elevation drawings, floor plans, detail drawings of Korean wooden treasure buildings were considered. First, the noise properties of the architectural drawings were learned with both a cycle generative model and heuristic image fusion methods. Consequently, a noise reduction network was trained through supervised learning using training sets prepared using the noise models. The proposed method provided effective removal of noise without deteriorating fine lines in the architectural drawings and it showed good performance for various noise types.

A Performance Comparison of Parallel Programming Models on Edge Devices (엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구)

  • Dukyun Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

Visualization of Motor Unit Activities in a Single-channel Surface EMG Signal

  • Hidetoshi Nagai
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.211-220
    • /
    • 2023
  • Surface electromyography (sEMG) is a noninvasive method used to capture electrically muscle activity, which can be easily measured even during exercise. The basic unit of muscle activity is the motor unit, and because an sEMG signal is a superposition of motor unit action potentials, analysis of muscle activity using sEMG should ideally be done from the perspective of motor unit activity. However, conventional techniques can only evaluate sEMG signals based on abstract signal features, such as root-mean-square (RMS) and mean-power-frequency (MPF), and cannot detect individual motor unit activities from an sEMG signal. On the other hand, needle EMG can only capture the activity of a few local motor units, making it extremely difficult to grasp the activity of the entire muscle. Therefore, in this study, a method to visualize the activities of motor units in a single-channel sEMG signal by relocating wavelet coefficients obtained by redundant discrete wavelet analysis is proposed. The information obtained through this method resides in between the information obtained through needle EMG and the information obtained through sEMG using conventional techniques.

Efficacy of nano-drugs in muscle injury rehabilitation and fatigue relief

  • Zicheng Wang;Yanqing Liu;Haibo Wang;Dai Liu;Niuniu Yang;Mengying Lv
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Gold nanoparticles have recognized a promising drug carriers in many diseases. These nanoparticles could carry anti-inflammatory drugs in the case of muscle injury and for fatigue relief. On the other hand, specific surface of this kind of nanoparticles could be critical in amount of drug they could carry. Therefore, in this study, we explore different methodology and influencing parameters on the specific surface of gold nanoparticles. After specifying the main parameters, different machine learning and artificial neural network are adopted to model the effects of different parameters. Furthermore, response surface methodology is utilized to obtain a quadrilateral relationship between different parameters and specific surface. The results indicate that concentration of the gold salt solution is the most important parameter in increasing the size of gold nanoparticle and, as a consequence, increasing specific surface. Moreover, the ability of gold nanoparticles in prolonging retention of the drugs is discussed in detail.

Generating A Synthetic Multimodal Dataset for Vision Tasks Involving Hands (손을 다루는 컴퓨터 비전 작업들을 위한 멀티 모달 합성 데이터 생성 방법)

  • Lee, Changhwa;Lee, Seongyeong;Kim, Donguk;Jeong, Chanyang;Baek, Seungryul
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1052-1055
    • /
    • 2020
  • 본 논문에서는 3D 메시 정보, RGB-D 손 자세 및 2D/3D 손/세그먼트 마스크를 포함하여 인간의 손과 관련된 다양한 컴퓨터 비전 작업에 사용할 수 있는 새로운 다중 모달 합성 벤치마크를 제안 하였다. 생성된 데이터셋은 기존의 대규모 데이터셋인 BigHand2.2M 데이터셋과 변형 가능한 3D 손 메시(mesh) MANO 모델을 활용하여 다양한 손 포즈 변형을 다룬다. 첫째, 중복되는 손자세를 줄이기 위해 전략적으로 샘플링하는 방법을 이용하고 3D 메시 모델을 샘플링된 손에 피팅한다. 3D 메시의 모양 및 시점 파라미터를 탐색하여 인간 손 이미지의 자연스러운 가변성을 처리한다. 마지막으로, 다중 모달리티 데이터를 생성한다. 손 관절, 모양 및 관점의 데이터 공간을 기존 벤치마크의 데이터 공간과 비교한다. 이 과정을 통해 제안된 벤치마크가 이전 작업의 차이를 메우고 있음을 보여주고, 또한 네트워크 훈련 과정에서 제안된 데이터를 사용하여 RGB 기반 손 포즈 추정 실험을 하여 생성된 데이터가 양질의 질과 양을 가짐을 보여준다. 제안된 데이터가 RGB 기반 3D 손 포즈 추정 및 시맨틱 손 세그멘테이션과 같은 품질 좋은 큰 데이터셋이 부족하여 방해되었던 작업에 대한 발전을 가속화할 것으로 기대된다.

A Study on Character Design Using [Midjourney] Application

  • Chen Xi;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.409-414
    • /
    • 2023
  • In recent years, the emergence of a number of AI image generation software represented by [Midjourney] has brought great impetus to the development of the field of AI-assisted art creation. Compared with the traditional hand-painted digital painting with the aid of electronic equipment, broke the traditional sense of animation character creation logic.This paper analyzes the application of AI technology in the field of animation character design through the practice of two-dimensional animation character . This is having a significant impact on the productivity and innovation of animation design and character modeling. The key results of the analysis indicate that AI technology, particularly through the utilization of "Midjourney,"enables the automation of certain design tasks, provides innovative approaches, and generates visually appealing and realistic characters. In conclusion, the integration of AI technology, specifically the application of "Midjourney," brings a new dimension to animation character design. The utilization of AI image generation software facilitates streamlined workflows, sparks creativity, and improves the overall quality of animated characters. As the animation industry continues to evolve, AI-assisted tools like "Midjourney" hold great potential for further advancement and innovation.

Research Trends in Large Language Models and Mathematical Reasoning (초거대 언어모델과 수학추론 연구 동향)

  • O.W. Kwon;J.H. Shin;Y.A. Seo;S.J. Lim;J. Heo;K.Y. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.1-11
    • /
    • 2023
  • Large language models seem promising for handling reasoning problems, but their underlying solving mechanisms remain unclear. Large language models will establish a new paradigm in artificial intelligence and the society as a whole. However, a major challenge of large language models is the massive resources required for training and operation. To address this issue, researchers are actively exploring compact large language models that retain the capabilities of large language models while notably reducing the model size. These research efforts are mainly focused on improving pretraining, instruction tuning, and alignment. On the other hand, chain-of-thought prompting is a technique aimed at enhancing the reasoning ability of large language models. It provides an answer through a series of intermediate reasoning steps when given a problem. By guiding the model through a multistep problem-solving process, chain-of-thought prompting may improve the model reasoning skills. Mathematical reasoning, which is a fundamental aspect of human intelligence, has played a crucial role in advancing large language models toward human-level performance. As a result, mathematical reasoning is being widely explored in the context of large language models. This type of research extends to various domains such as geometry problem solving, tabular mathematical reasoning, visual question answering, and other areas.