• Title/Summary/Keyword: artificial hand

Search Result 496, Processing Time 0.048 seconds

Elemental analysis of caries-affected root dentin and artificially demineralized dentin

  • Sung, Young-Hye;Son, Ho-Hyun;Yi, Keewook;Chang, Juhea
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • Objectives: This study aimed to analyze the mineral composition of naturally- and artificially-produced caries-affected root dentin and to determine the elemental incorporation of resin-modified glass ionomer (RMGI) into the demineralized dentin. Materials and Methods: Box-formed cavities were prepared on buccal and lingual root surfaces of sound human premolars (n = 15). One cavity was exposed to a microbial caries model using a strain of Streptococcus mutans. The other cavity was subjected to a chemical model under pH cycling. Premolars and molars with root surface caries were used as a natural caries model (n = 15). Outer caries lesion was removed using a carbide bur and a hand excavator under a dyeing technique and restored with RMGI (FujiII LC, GC Corp.). The weight percentages of calcium (Ca), phosphate (P), and strontium (Sr) and the widths of demineralized dentin were determined by electron probe microanalysis and compared among the groups using ANOVA and Tukey test (p < 0.05). Results: There was a pattern of demineralization in all models, as visualized with scanning electron microscopy. Artificial models induced greater losses of Ca and P and larger widths of demineralized dentin than did a natural caries model (p < 0.05). Sr was diffused into the demineralized dentin layer from RMGI. Conclusions: Both microbial and chemical caries models produced similar patterns of mineral composition on the caries-affected dentin. However, the artificial lesions had a relatively larger extent of demineralization than did the natural lesions. RMGI was incorporated into the superficial layer of the caries-affected dentin.

Deep Learning-Based Vehicle Anomaly Detection by Combining Vehicle Sensor Data (차량 센서 데이터 조합을 통한 딥러닝 기반 차량 이상탐지)

  • Kim, Songhee;Kim, Sunhye;Yoon, Byungun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.20-29
    • /
    • 2021
  • In the Industry 4.0 era, artificial intelligence has attracted considerable interest for learning mass data to improve the accuracy of forecasting and classification. On the other hand, the current method of detecting anomalies relies on traditional statistical methods for a limited amount of data, making it difficult to detect accurate anomalies. Therefore, this paper proposes an artificial intelligence-based anomaly detection methodology to improve the prediction accuracy and identify new data patterns. In particular, data were collected and analyzed from the point of view that sensor data collected at vehicle idle could be used to detect abnormalities. To this end, a sensor was designed to determine the appropriate time length of the data entered into the forecast model, compare the results of idling data with the overall driving data utilization, and make optimal predictions through a combination of various sensor data. In addition, the predictive accuracy of artificial intelligence techniques was presented by comparing Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) as the predictive methodologies. According to the analysis, using idle data, using 1.5 times of the data for the idling periods, and using CNN over LSTM showed better prediction results.

Normalized Difference Vegetation Index based on Landsat Images Variations between Artificial and Natural Restoration Areas after Forest Fire (산불 지역 인공·자연복원에 따른 Landsat영상 기반 식생지수 비교)

  • Noh, Jiseon;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.43-57
    • /
    • 2022
  • This study aims to classify forest fire-affected areas, identify forest types by the intensity of forest fire damage using multi-time Landsat-satellite images before and after forest fires and to analyze the effects of artificial restoration sites and natural restoration sites. The difference in the values of the Normalized Burned Ratio(NBR) before and after forest fire damage not only maximized the identification of forest fire affected and unaffected areas, but also quantified the intensity of forest fire damage. The index was also used to confirm that the higher the intensity of forest fire damage in all forest fire-affected areas, the higher the proportion of coniferous forests, relatively. Monitoring was conducted after forest fires through Normalized Difference Vegetation Index(NDVI), an index suitable for the analysis of effects by restoration type and the NDVI values for artificial restoration sites were found to no longer be higher after recovering the average NDVI prior to the forest fire. On the other hand, the natural restoration site witnessed that the average NDVI value gradually became higher than before the forest fires. The study result confirms the natural resilience of forests and these results can serve as a basis for decision-making for future restoration plans for the forest fire affected areas. Further analysis with various conditions is required to improve accuracy and utilization for the policies, in particular, spatial analysis through forest maps as well as review through site checks before and immediately after forest fires. More precise analysis on the effects of restoration will be available based on a long term monitoring.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

A Study on the Change of Quality in a Residential Sector of Single Person Households in Seoul during the COVID-19: Analyze Variable Importance and Causality with Artificial Neural Networks and Logistic Regression Analysis (서울시 1인 가구의 코로나 19 전후 주거의 질 변화 연구: 인공신 경망과 로지스틱 회귀모형을 활용한 변수 중요도 및 인과관계 분석)

  • Jaebin, Lim;Kiseong, Jeong
    • Land and Housing Review
    • /
    • v.14 no.1
    • /
    • pp.67-82
    • /
    • 2023
  • Using the Artificial Neural Network model and Binary Logistic Regression model, this study investigates influence factors on the quality of life in terms of housing environment during the COVID-19 in Seoul. The results show that the lower the satisfaction level of housing policy, the lower the quality of life in the employment field and the lower the quality of residential field. On the other hand, permanent workers and self-employed respondents have experienced improvement in residential quality during the pandemic. A limitation of this study is associated with disentangling the causal relationship using the 'black box' characteristics of ANN method.

Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence (수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Spatial Estimation of soil roughness and moisture from Sentinel-1 backscatter over Yanco sites: Artificial Neural Network, and Fractal

  • Lee, Ju Hyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.125-125
    • /
    • 2020
  • European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.

  • PDF

Research on Developing a Conversational AI Callbot Solution for Medical Counselling

  • Won Ro LEE;Jeong Hyon CHOI;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2023
  • In this study, we explored the potential of integrating interactive AI callbot technology into the medical consultation domain as part of a broader service development initiative. Aimed at enhancing patient satisfaction, the AI callbot was designed to efficiently address queries from hospitals' primary users, especially the elderly and those using phone services. By incorporating an AI-driven callbot into the hospital's customer service center, routine tasks such as appointment modifications and cancellations were efficiently managed by the AI Callbot Agent. On the other hand, tasks requiring more detailed attention or specialization were addressed by Human Agents, ensuring a balanced and collaborative approach. The deep learning model for voice recognition for this study was based on the Transformer model and fine-tuned to fit the medical field using a pre-trained model. Existing recording files were converted into learning data to perform SSL(self-supervised learning) Model was implemented. The ANN (Artificial neural network) neural network model was used to analyze voice signals and interpret them as text, and after actual application, the intent was enriched through reinforcement learning to continuously improve accuracy. In the case of TTS(Text To Speech), the Transformer model was applied to Text Analysis, Acoustic model, and Vocoder, and Google's Natural Language API was applied to recognize intent. As the research progresses, there are challenges to solve, such as interconnection issues between various EMR providers, problems with doctor's time slots, problems with two or more hospital appointments, and problems with patient use. However, there are specialized problems that are easy to make reservations. Implementation of the callbot service in hospitals appears to be applicable immediately.

An Electrical Resistivity Survey for the Characterization of Alluvial Layers at Groundwater Artificial Recharge Sites (지하수 인공함양 지역 충적층 특성 평가를 위한 전기비저항탐사)

  • Won, Byeongho;Shin, Jehyun;Hwang, Seho;Hamm, Se-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.154-162
    • /
    • 2013
  • Vertical electrical sounding and 2D electrical resistivity survey were applied for evaluating the characteristics of alluvial layers at a groundwater artificial recharge site. The fine particles in alluvial layer, main target layer of groundwater artificial recharge, may cause clogging phenomena. In this case, electrical resistivity method is an effective technique to verify the spatial distribution of low-resistivity layers, such as saturated silts and clays. On the other hand, much attention should be paid to interpret the resistivity data in unconsolidated layers, because thick clayey overburden sometimes produces a masking effect on underlying interbedded resistive sands and gravels. Considering these points, we designed 35 points arranged in a grid form for vertical electrical sounding and 10 lines for 2D electrical resistivity survey, and concentrated our effort on enhancing the vertical and horizontal resolution of resistivity images. According to the results, 15 meters thick layers consisting of sands and gravels are located in 30 meters below ground. And the spatial distribution of silts and clays are mapped, which may cause clogging. Consequently, this approach can contribute to design and determine the location and depth of injection and observation wells for groundwater artificial recharge.