• Title/Summary/Keyword: artificial aggregates

Search Result 111, Processing Time 0.027 seconds

Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass (폐유리를 재활용한 인공경량골재의 발포기구)

  • Kang, Shin-Hyu;Lee, Ki-Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

Characterization of artificial aggregates fabricated with direct sintering method (직화소성법으로 제조된 인공골재의 특성 분석)

  • Kim, Kang-Duk;Kang, Seun-Ggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • The bulk density, water absorption and microstructure of the artificial aggregates were controlled as a function of sintering temperature (1100 and $1200^{\circ}C$) and time (10~60 min) in the fabrication process of the artificial aggregates by the direct sintering process using dredged soil, the inorganic wastes. Also, the physical properties of the artificial aggregates fabricated according to the different sintering methods such as the direct sintering method used in this study and the increasing temperature sintering method used in the previous report, were compared and analysed. The bulk density of aggregates sintered at $1200^{\circ}C$ by the direct sintering method showed below 1.0, and the thickness of a shell and the pore size of the black core were increased with sintering temperature. Also, in the same sintering temperature, the area of black core was decreased, the thickness of shell was increased and the water absorption was decreased with sintering time. The black core of artificial aggregates of bulk density below 1.0 had the similar microstructure, regardless of sintering methods. In contrast, the shell of aggregates fabricated by the increasing temperature sintering method showed more dense microstructure than that by direct sintering method, hence the water absorption of aggregate sintered using direct sintering was relatively high. Thus, the direct sintering method is suitable for fabrication of artificial aggregates in ceramic carriers or absorbents applications.

Performance of adding waste glass and sewage sludge to reservoir-sediment aggregates

  • Chiou, Ing-Jia;Chen, Chin-Ho;Lin, Chia-Ling
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.83-96
    • /
    • 2014
  • Accumulated annual reservoir sedimentation in Taiwan was 14.6 million m3 in 2010, seriously endangering reservoir safety and the water supply. In addition, the sintering temperature of reservoir-sediment aggregates (RSAs) is very high, and very energy consuming consequently. Therefore, to explore the effects of admixtures on sintering behavior and performance of the aggregates, two different admixtures are blended, waste-glass and municipal sewage sludge, into reservoir sediment to make artificial aggregates. Experimental results show that the lightweight characteristics of waste-glass/reservoir-sediment aggregates (WGRSAs) are more significant than those of sewage sludge/reservoir-sediment aggregates (SSRSAs). Moreover, as sintering temperature increases, the specific gravity of WGRSAs drops more apparently. The optimum sintering temperature of pure reservoir-sediment aggregates (PRSAs), SSRSAs, and WGRSAs was $1150^{\circ}C$, $1100^{\circ}C$, and $1050^{\circ}C$, respectively. The PRSAs are normal weight with better strength; the WGRSAs are lightweight and energy-saving; and the SSRSAs are lightweight with normal strength.

Experiments of electric furnace simulator for property prediction of the artificial lightweight aggregate sintered by rotary kiln (로타리킬른 소성 골재 물성예측을 위한 전기로 실험)

  • Ryu, Yug-Wang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • If the properties of artificial lightweight aggregates produced by rotary kiln can be predicted by using a simulator equipped with a small electric furnace and a specially designed device for specimen movement, large amount of raw materials and plenty of test time can be saved to produce test products of lightweight aggregates. In this study a simulator for the accurate prediction of the artificial lightweight aggregates produced by rotary kiln was assembled by our own design and the properties of lightweight aggregates produced by both the simulator and rotary kiln were compared to speculate its usefulness. The average diameter of aggregates was 8 mm and atmosphere in the furnace was controlled by the amount of carbon powders. Specific gravity, absorption rate (%), black-core area in the cross-sectional view of both aggregates were measured and compared. Unlike oxydizing atmosphere, both specific gravity and absorption rate of the aggregates sintered at reducing atmosphere were increased with increasing carbon addition. It is concluded that the sintering atmosphere was the closest to that of the rotary kiln when the carbon addition was 0.7 g to make a reducing atmosphere in the furnace and the properties of both agreggates was also similar to each other.

Application on Concrete using Artificial Aggregate with Paper Sludge Ash (제지 슬러지 소각회 인공골재의 콘크리트에의 적용)

  • 문경주;백명종;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.173-178
    • /
    • 1998
  • This study is described the experimental result of the development of artificial aggregate using paper sludge ash and the application of it in concrete. Artificial aggregates are prepared with crushed stone in the variety aspect. Therefore, Quality properties of artificial aggregate using paper sludge ash are fairly corresponded with it of crushed stone. For the application of artificial aggregate using paper sludge ash in concrete, Coarse aggregates are replaced with artificial aggregate using paper sludge ash in the constant of volume(0%, 30%, 70%, 100%). It is conclued from the test results that the artificial aggregate using paper sludge ash could be used replacement of coarse aggregate in concrete. Continuous study should be planned for improvement of it's quality.

  • PDF

A study on the properties of artificial aggregates containing bottom ash from the power plant and waste catalyst slag (화력발전소 바닥재와 폐촉매 슬래그로 제조된 인공골재의 특성 연구)

  • Jo, Si-Nae;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • The artificial aggregate composing of coal bottom ash and waste catalyst slag (7 : 3, wt%) were fabricated using direct sintering method and, the bloating properties of aggregates were investigated as a function of raw material particle size and sintering temperature. Most of the artificial aggregates sintered at over $1150^{\circ}C$ showed the bloating phenomenon regardless of particle size of the raw materials. Consequently, the specific gravity of the aggregates was drastically decreased to below 1.4. The aggregates containing waste catalyst slag of $90{\mu}m$ under among the W-series specimens, however, did not show the noticeable bloating phenomenon. For the aggregates sintered at lower temperature as $1050{\sim}1150^{\circ}C$, the specific gravity increased with particle size of raw materials. Also, the water absorption of all aggregates decreased with the sintering temperature. The aggregates fabricated in this study met the lightweight aggregate standard showing the specific gravity 1.7~1.4 and water absorption 8~19 % and, therefore, can be applicable for the various fields.

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

Evaluation of Properties of Artificial Soil Aggregate Based on Ground Granulated Blast-Furnace Slag According to Unit Binder Content (단위결합재량에 따른 고로슬래그 기반 육성용 인공토양골재의 특성평가)

  • Mun, Ju-Hyun;Sim, Jae-Il;Yun, In-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.85-92
    • /
    • 2016
  • The eight mixes and artificial soil aggregates were prepared for evaluating the practical application of lightweight foamed concrete as soil aggregates. The main parameter was unit binder content ranged between from 100 to $800kg/m^3$. In lightweight foamed concrete, flow, slurry and dried density, and compressive strength at different ages were measured. In Artificial soil aggregates crushed from lightweight foamed concrete, particle size distribution, pH, coefficient of permeability, cation exchange capacity(CEC), and ratio of carbon to nitrogen(ratio of C/N), were measured. The test results showed that flow, slurry and dried density, and compressive strength at different ages of lightweight foamed concrete increased with the increasing of unit binder content. Compressive strength at age of 28, of lightweight foamed concrete with unit binder of more than $500kg/m^3$, was more than 4 MPa. The ammonium phosphate immersion time of more than age of 3, was effective to decrease pH of artificial soil aggregates. In addition, artificial soil aggregates was evaluated as high class in terms of cation exchange capacity(CEC), while satisfied with value of ratio of carbon to nitrogen(ratio of C/N) recommended by landscape specification.

Bloating mechanism of artificial lightweight aggregate with reject ash (잔사회를 이용한 인공경량골재의 발포기구)

  • Lee, Ki-Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • The purpose of this study is to improve recycling rate of the coal reject ash by investigating bloating mechanism for artificial lightweight aggregate of reject ash. In this study, we use reject ash (R/A) and dredged soil (D/S) as raw materials. The artificial lightweight aggregates were formed by plastic forming (${\phi}$ = 10 mm) and sintered by temperature raising method at different temperatures (between 1200 and $1275^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of R/A-D/S contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of R/A 80 wt.%. From the microstructure images, we considered the artificial lightweight aggregates content of R/A over 80 wt.% are distributed numerous uniform micro-pores by vitrification without Black Core and the artificial lightweight aggregates of R/A below 80wt.% are distributed macro-pores with Black Core.

Fabrication of Artificial Light-weight Aggregates of Uniform Bloating Properties Using a Temperature-raising Sintering Method (승온 소성법을 이용한 균일 발포 특성을 갖는 인공경량골재의 제조)

  • Kang, Min-A;Kang, Seung-Gu;Lee, Gi-Gang;Kim, Yoo-Tack
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.161-166
    • /
    • 2012
  • The temperature-rasing sintering method was used in this study to fabricate the aggregates of uniform pore size and distribution containing reject ash occurred in the thermal power plant. The spheric green aggregates made of reject ash were put into the box furnace of 800~$1000^{\circ}C$, heated with a heating rate of 5~$15^{\circ}C$/min to 1200~$1275^{\circ}C$, sintered for 10 min and then discharged out of the furnace to the room temperature. The input temperature, heating rate and sintering temperature increased the bloating phenomenon of the specimen, and the sintering temperature among them was the most effective factor. The aggregate manufactured at $1275^{\circ}C$ had the specific gravity of about 1.0 and water absorption of 1~2%, and the pores of 500~1,000 ${\mu}m$ were uniformly distributed across the whole specimen. Especially, the aggregates fabricated using the temperature-rasing sintering method in this study showed an excellent bloating properties and uniform microstructure without black core phenomenon which is typical for the bloated ceramics synthesized by direct sintering method.