Pediatric Computed Tomography (CT) examinations can often result in exam failures or the need for frequent retests due to the difficulty of cooperation from young patients. Deep Learning Image Reconstruction (DLIR) methods offer the potential to obtain diagnostically valuable images while reducing the retest rate in CT examinations of pediatric patients with high radiation sensitivity. In this study, we investigated the possibility of applying DLIR to reduce artifacts caused by respiration or motion and obtain clinically useful images in pediatric chest CT examinations. Retrospective analysis was conducted on chest CT examination data of 43 children under the age of 7 from P Hospital in Gyeongsangnam-do. The images reconstructed using Filtered Back Projection (FBP), Adaptive Statistical Iterative Reconstruction (ASIR-50), and the deep learning algorithm TrueFidelity-Middle (TF-M) were compared. Regions of interest (ROI) were drawn on the right ascending aorta (AA) and back muscle (BM) in contrast-enhanced chest images, and noise (standard deviation, SD) was measured using Hounsfield units (HU) in each image. Statistical analysis was performed using SPSS (ver. 22.0), analyzing the mean values of the three measurements with one-way analysis of variance (ANOVA). The results showed that the SD values for AA were FBP=25.65±3.75, ASIR-50=19.08±3.93, and TF-M=17.05±4.45 (F=66.72, p=0.00), while the SD values for BM were FBP=26.64±3.81, ASIR-50=19.19±3.37, and TF-M=19.87±4.25 (F=49.54, p=0.00). Post-hoc tests revealed significant differences among the three groups. DLIR using TF-M demonstrated significantly lower noise values compared to conventional reconstruction methods. Therefore, the application of the deep learning algorithm TrueFidelity-Middle (TF-M) is expected to be clinically valuable in pediatric chest CT examinations by reducing the degradation of image quality caused by respiration or motion.
In the late Joseon Dynasty, when the bride would ride a palanquin when she went to live with her in-laws, it was a custom to cover the palanquin with tiger skin to ward off misfortunes that may come her way. The higher classes used tiger skin or leopard skin for this purpose, but the common people had to substitute this expensive item with a tiger pattern painted on a blanket. Such blankets were called hotanja, hogu, hoguyok and the like. The term "hotanja" is a pure Korean word. It is not known when the cover for the bridal palanquin was first used, but it was popular from the end of the 19th century and then gradually disappeared. This is due to the introduction of new Western style weddings that eliminated the need for a bridal palanquin. The tiger print blanket was used not only to cover the bride's palanquin but also to cover a table or floor during the wedding ceremony. This study ran a material analysis on nine pieces of tiger print blankets. All of the blanket artifacts examined in this study had an outer cover and a lining made of fabric that used cotton thread for the warp and wool thread for the weft. Two kinds of wool were found in the weft thread in the outer covers: fat-tailed sheep hair from China and goat hair for carpets from the Hebei province, China. Records show that "blankets with painted tiger patterns" were imported from Russia, and the imported blankets were from Russia and China. The outer cover can be categorized into six types, and the lining into three types depending on the weave and direction of the thread twist. The hem facing can be divided into four types. The lining and outer cover use the full width of the fabric, which was woven in wide widths of 135 cm or wider. The tiger pattern on the blanket was made by stenciling. The stencil design of the body and tail of the tiger were placed on a red blanket to be painted in white, and then the background color of the tiger, which is yellow, would be painted over the white, and then black stripes would be added. The pattern of the tiger varies, which shows that the blankets were made by various craftspeople. The pattern of the tiger print blanket is usually of a tiger lying down, but there were tiger print blankets with a tiger standing up. The pattern of the tiger grew smaller over time, and flower patterns were added in the background. Decorative elements were gradually added to the tiger print blanket patterns, but its function as a palanquin cover became lost. By taking the features of tiger print blankets into consideration, it can be assumed that there are imported pieces among the remaining pieces, and were produced in various places because it was popular at that time.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.255-262
/
2023
In the early 20th century, Yeomjae Song Tae-hoe (念齋 宋泰會, 1872-1941), a disciple and onetime adopted son of teacher Song Su-myeon(宋修勉, 1847-1916), moved to Gochang and laid the foundation for Gochang calligraphy and painting, and it can be seen that a full-fledged flow began. Yeomjae Song Tae-hoe was a scholar and calligrapher of the late Joseon Dynasty and modern period from Hwasun, Jeollanam-do. He is a person who created the foundation of Gochang calligraphy and painting while working as an educator in Chinese literature, calligraphy, and painting, mainly in his hometown of Hwasun and Gochang, while engaging in creative activities. He was intelligent from a young age and showed an extraordinary talent for calligraphy. At the age of 16, he passed the Jinsa exam (童蒙進士) and became the youngest student to study at Sungkyunkwan. He was active by holding exhibitions nationwide based in Gochang and Jeonju, and was also an educator who fostered younger students by establishing Gochang High School (currently, Gochang Middle and High School) to cultivate national spirit and history. Yeomjae drew strong and healthy landscape paintings under the absolute influence of the painting style of Saho Song Su-myeon, and dealt with various materials of southern school literati paintings such as flowers and birds and four plants. In particular, he is a representative calligrapher who encompasses the early modern era and the modern era in that he expressed his interest in new cultural artifacts as well as the realization of a modern-oriented realistic landscape based on Korean natural beauty. He laid the foundation for modern and contemporary calligraphy and painting. Goam Lee Eung-no (顧菴 李應魯, 1904-1989), a world-renowned painter, learned the basics of ink painting from Yeomjae in his late teens.However, compared to his various artistic and social activities, it is regrettable that he is limited and evaluated as a local writer.
Pottery filled with organic materials was excavated from the G-2 building site of Yongjangseong Fortress, Jingo, a relic of the Goryeo Dynasty. In this study, the characteristics of organic material were confirmed by a scientific analysis of organic material in pottery found at the palace in Yongjangseong, Jindo. In addition, it was intended to review the analysis method to identify the natural resin and to secure characteristic components(biomarkers) for each natural resin and use them as basic data in the future. The organic materials in the pottery were analyzed using attenuated total reflectance Fourier-transformed infrared spectroscopy(ATR-FTIR) and gas chromatography mass spectrometry(GC-MS). The infrared spectral characteristics were estimated to be natural resin, and biomarkers of organic materials were identified as sesquiterpene-based compounds(C15H24, MW 204) and derivatives. The lacquer(T.vemicifluum) is composed mainly of alkenes, alkanes, and catechol. Pine resin(P.densiflora), on the other hand, is primarily composed of diterpenoid(abietic acid, pimaric acid) and Whangchil(yellow lacquer) is identified to have sesquiterpenes(such as selinene, muurolene, calamenene) as its main components. So, the organic material in the pottery can be identified as Whangchil by comparing their compounds with modern resin materials from Dendropanax. morbifera that correspond with the results. Whangchil, which is exuded from the Dendropanax. morbifera, has been used as a natural coating materials since ancient times, and it has been confirmed that the characteristic components are well preserved even 700 years later. It can be assumed that the interior Whangchil was stored not for use as a coating, but rather for ritual purposes when the building was constructed, because the pottery was found near the cornerstone. Furthermore, based on simplified sample preparation using pyrolysis-gas chromatography mass spectrometry(Py-GC-MS), the thermal decomposition products were found to be similar to the characteristic components, suggesting that this method can be applied to the identification of natural resins used in historic artifacts.
LEE Sang-Hee;KIM Sung-Bo;KIM Jin-Hoo;HYUN Chang-Uk
Korean Journal of Heritage: History & Science
/
v.56
no.3
/
pp.174-193
/
2023
Korea is surrounded by the sea and has rivers connecting to it throughout the inland areas, which has been a geographical characteristic since ancient times. As a result, there have been exchanges and conflicts with various countries through the sea, and rivers have facilitated the transportation of ships carrying grain, goods paid for by taxes, and passengers. Since the past, the sea and rivers have had a significant impact on the lives of Koreans. Consequently, it is expected that there are many cultural heritages submerged in the sea and rivers, and continuous efforts are being made to discover and preserve them. Underwater cultural heritage is difficult to discover due to its location in the sea or rivers, making direct visual observation and exploration challenging. To overcome these limitations, various geophysical survey techniques are employed. Geophysical survey methods utilize the physical properties of elastic waves, including their reflection and refraction, to conduct surveys such as bathymetry, underwater topography and strata. These techniques detect the physical characteristics of underwater objects and seafloor formation in the underwater environment, analyze differences, and identify underwater cultural heritage located on or buried in the seabed. Bathymetry uses an echo sounder, and an underwater topography survey uses a side-scan sonar to find underwater artifacts lying on or partially exposed to the seabed, and a marine shallow strata survey uses a sub-bottom profiler to find underwater heritages buried in the seabed. However, the underwater cultural heritage discovered in domestic waters thus far has largely been accidental findings by fishermen, divers, or octopus hunters. This study aims to analyze and summarize the latest research trends in equipment used for underwater cultural heritage exploration, including bathymetric surveys, underwater topography surveys and strata surveys. The goal is to contribute to research on underwater cultural heritage investigation in the domestic context.
Yeong-Hak Jo;Se-Jong Yoo;Seok-Hwan Bae;Jong-Ryul Seon;Seong-Ho Kim;Won-Jeong Lee
Journal of the Korean Society of Radiology
/
v.18
no.1
/
pp.45-52
/
2024
In this study, an AI-based algorithm was developed to prevent image quality deterioration and reading errors due to patient movement in PET/CT examinations that use radioisotopes in medical institutions to test cancer and other diseases. Using the Mothion Free software developed using, we checked the degree of correction of movement due to breathing, evaluated its usefulness, and conducted a study for clinical application. The experimental method was to use an RPM Phantom to inject the radioisotope 18F-FDG into a vacuum vial and a sphere of a NEMA IEC body Phantom of different sizes, and to produce images by directing the movement of the radioisotope into a moving lesion during respiration. The vacuum vial had different degrees of movement at different positions, and the spheres of the NEMA IEC body Phantom of different sizes produced different sizes of lesions. Through the acquired images, the lesion volume, maximum SUV, and average SUV were each measured to quantitatively evaluate the degree of motion correction by Motion Free. The average SUV of vacuum vial A, with a large degree of movement, was reduced by 23.36 %, and the error rate of vacuum vial B, with a small degree of movement, was reduced by 29.3 %. The average SUV error rate at the sphere 37mm and 22mm of the NEMA IEC body Phantom was reduced by 29.3 % and 26.51 %, respectively. The average error rate of the four measurements from which the error rate was calculated decreased by 30.03 %, indicating a more accurate average SUV value. In this study, only two-dimensional movements could be produced, so in order to obtain more accurate data, a Phantom that can embody the actual breathing movement of the human body was used, and if the diversity of the range of movement was configured, a more accurate evaluation of usability could be made.
The fundamental basis for revitalizing cultural resources and developing content is national heritage(cultural property). In national heritage, cultural heritage is a tangible cultural heritage that represents the uniqueness of history and tradition, identity, and changes in life. In the case of museums, the collections (a museum-owned cultural heritage) represent the unique characteristics of the institution. In South Korea, it is recommended that museum collections be registered and used in the Cultural Heritage Standard Management System so that cultural heritage can be managed and utilized in connection with academics, industry, and administration. However, due to a lack of awareness of modern and contemporary heritage, the thematic classification chronology of the system was set mainly before the Joseon Dynasty, and a cultural heritage classification system suitable for national land information has not been established. Therefore, this study aims to propose a classification system for cadastral cultural heritage, based on the modern era when cadastral terminology was first used, using the cultural heritage owned by the LX Museum. Cadastral cultural heritage is characterized by the fact that although it is a field of specialized technology, the surveying or the production of it is not done by specific individuals only, and that while the production is professional, there are many educational aspects in its use. Therefore, unlike other specialized museum collections that are classified based on the functional aspects of their production methods, intended use, and creators, the classification method for cadastral cultural artifacts should be based on the characteristics of the cadastral tools and the outputs. This classification follows a three-tier stages with reference to the items in the Cultural Heritage Standard Management System. This classification aims at the effective use of knowledge by categorizing concepts and systematizing the subjects of data into a series of orders. A safe conservation and management environment for cadastral cultural heritage can be established, and academic and socio-cultural interpretation of the collection is possible by this classfication. Moreover, It is also expected to serve the basis for the national land information as well as searching for the national land information research, planning a exhibition, and the field of education in museum.
Purpose We compared the radiation dose and image quality between the 2nd generation and the 3rd generation dual-source single-energy (DSSE) and dual-source dual-energy (DSDE) CT of the abdomen. Materials and Methods We included patients undergoing follow-up abdominal CT after partial or radical nephrectomy in the first 10 months of 2019 (2nd generation DS CT) and the first 10 months of 2020 (3rd generation DS CT). We divided the 320 patients into 4 groups (A, 2nd generation DSSE CT; B, 2nd generation DSDE CT; C, 3rd generation DSSE CT; and D, 3rd generation DSDE CT) (n = 80 each) matched by sex and body mass index. Radiation dose and image quality (objective and subjective qualities) were compared between the groups. Results The mean size-specific dose estimation of 3rd generation DSDE CT group was significantly lower than that of the 2nd generation DSSE CT (42.5%, p = 0.013) and 2nd generation DSDE CT (46.9%, p = 0.015) groups. Interobserver agreement was excellent for the overall image quality (intraclass correlation coefficient [ICC]: 0.8867) and image artifacts (ICC: 0.9423). Conclusion Our results showed a considerable reduction in the radiation dose while maintaining high image quality with 3rd generation DSDE CT as compared to the 2nd generation DSDE CT and 2nd generation DSSE CT.
Purpose To evaluate whether the image quality of chest radiographs obtained using a camera-type portable X-ray device is appropriate for clinical practice by comparing them with traditional mobile digital X-ray devices. Materials and Methods Eighty-six patients who visited our emergency department and underwent endotracheal intubation, central venous catheterization, or nasogastric tube insertion were included in the study. Two radiologists scored images captured with traditional mobile devices before insertion and those captured with camera-type devices after insertion. Identification of the inserted instruments was evaluated on a 5-point scale, and the overall image quality was evaluated on a total of 20 points scale. Results The identification score of the instruments was 4.67 ± 0.71. The overall image quality score was 19.70 ± 0.72 and 15.02 ± 3.31 (p < 0.001) for the mobile and camera-type devices, respectively. The scores of the camera-type device were significantly lower than those of the mobile device in terms of the detailed items of respiratory motion artifacts, trachea and bronchus, pulmonary vessels, posterior cardiac blood vessels, thoracic intervertebral disc space, subdiaphragmatic vessels, and diaphragm (p = 0.013 for the item of diaphragm, p < 0.001 for the other detailed items). Conclusion Although caution is required for general diagnostic purposes as image quality degrades, a camera-type device can be used to evaluate the inserted instruments in chest radiographs.
Korean Journal of Agricultural and Forest Meteorology
/
v.26
no.2
/
pp.89-102
/
2024
Land Surface Phenology (LSP) plays a crucial role in understanding vegetation dynamics. The near-infrared reflectance of vegetation (NIRv) has been increasingly adopted in LSP studies, being recognized as a robust proxy for gross primary production (GPP). However, NIR v is sensitive to the terrain effects in mountainous areas due to artifacts in NIR reflectance cannot be canceled out. Because of this, estimating phenological metrics in mountainous regions have a substantial uncertainty, especially in the end of season (EOS). The topographically corrected NIRv (TCNIRv) employs the path length correction (PLC) method, which was deduced from the simplification of the radiative transfer equation, to alleviate limitations related to the terrain effects. TCNIRv has been demonstrated to estimate phenology metrics more accurately than NIRv, especially exhibiting improved estimation of EOS. As the topographic effect is significantly influenced by terrain properties such as slope and aspect, our study compared phenology metrics estimations between south-facing slopes (SFS) and north-facing slopes (NFS) using NIRv and TCNIRv in two distinct mountainous regions: Gwangneung Forest (GF) and Odaesan National Park (ONP), representing relatively flat and rugged areas, respectively. The results indicated that TCNIR v-derived EOS at NFS occurred later than that at SFS for both study sites (GF : DOY 266.8/268.3 at SFS/NFS; ONP : DOY 262.0/264.8 at SFS/NFS), in contrast to the results obtained with NIRv (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). Additionally, the gap between SFS and NFS diminished after topographic correction (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). We conclude that TCNIRv exhibits discrepancy with NIR v in EOS detection considering slope orientation. Our findings underscore the necessity of topographic correction in estimating photosynthetic phenology, considering slope orientation, especially in diverse terrain conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.