• Title/Summary/Keyword: articulated spine

Search Result 6, Processing Time 0.021 seconds

Discontinuous Zigzag Gait Planning of Quadruped Walking Robot with an Articulated Spine (허리관절을 가지는 4족보행로봇의 지그재그 걸음새 계획)

  • 박세훈;하영호;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.703-710
    • /
    • 2004
  • This paper presents discontinuous zigzag gait analysis for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. An articulated spine walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. First, we suggest a kinematic modeling of an articulated spine robot which has new parameters such as a waist-joint angle, a rotate angle of a front and rear body and describe characteristics of gait using an articulated spine. Next, we compared the difference of walking motion of newly modeled robot with that of a single rigid-body robot and analyzed the gait of an articulated spine robot using new parameters. On the basis of above result, we proposed a best walking motion with maximum stability margin. To show the effectiveness of proposed gait planning by simulation, firstly the fastest walking motion is identified based on the maximum stride, because the longer the stride, the faster the walking speed. Next, the gait stability margin variation of an articulated spine robot is compared according to the allowable waist-joint angle.

Turning Gait Planning of a Quadruped Walking Robot with an Articulated Spine

  • Park, Se-Hoon;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1926-1930
    • /
    • 2004
  • We suggest a turning gait planning of a quadruped walking robot with an articulated spine. Robot developer has tried to implement a gait more similar to that of natural animals with high stability margin. Therefore, so many types of walking robot with reasonable gait have been developed. But there is a big difference with a natural animal walking motion. A key point is the fact that natural animals use their waist-oint(articulated spine) to walk. For example, a crocodile which has short legs relative to a long body uses their waist to walk more quickly and to turn more effectively. The other animals such as tiger, dog and so forth, also use their waist. Therefore, this paper proposes discontinuous turning gait planning for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. Turning gait is very important as same as straight gait. All animals need a turning gait to avoid obstacle or to change walking direction. Turning gait has mainly two types of gaits; circular gait and spinning gait. We apply articulated spine to above two gaits, which shows the majority of an articulated spine more effectively. Firstly, we describe a kinematic relation of a waist-joint, the hip, and the center of gravity of body, and then apply a spinning gait. Next, we apply a waist-joint to a circular gait. We compare a gait stability margin with that of a conventional single rigid body walking robot. Finally, we show the validity of a proposed gait with simulation.

  • PDF

Larval Development of the Grooved Tanner Crab, Chionoecetes tanneri Rathbun, 1893 (Decapoda: Brachyura: Majidae) Described from the Laboratoryreared Specimens

  • Hong, Sung-Yun;Park, Won-Gyu;Perry, R. Ian;Boutillier, James A.
    • Animal cells and systems
    • /
    • v.13 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • This paper documents the defining morphological characteristics of the larval stages of Chionoecetes tanneri Rathbun, 1893, the grooved Tanner crab, from specimens reared in the laboratory. Chionoecetes tanneri larval stages include two zoeae and one megalopa. The first zoea is characterized by: six setae on the posterior margin of the carapace; postero-lateral spines on abdominal somites 3 and 4, extending beyond the posterior margin of adjacent somites and bearing 9-10 spinnules; 12 plumose setae and one stout distal plumose seta present on the margin of the scaphognathite of the maxilla; and one fused lateral spine and one articulated dorso-medial spine on each fork of the telson. The second zoea is characterized by: 9 setae on the postero-lateral margin of the carapace; a serrated mandible molar; a mandibular palp bud; 25-26 plumose setae on the margin of the scaphognathite of the maxilla; pereiopods with well-developed gills and buds; and four pairs of stout setae on the posterior margin of the telson. For the megalopal stage, the distinguishing characteristics include: a rostral spine equal in length to the supraorbital spine; six setae on the exopod of the uropod; and a single spine on the ischium of the second pereiopod. This study allows C. tanneri larvae to be distinguished from the larvae of known sympatric congeners. This information provides a basic taxonomic tool for researchers in fisheries management and zooplankton ecology who are addressing issues related to trophic interactions, metapopulation dynamics and ecosystem impacts in the evolving marine resource management strategies in the North Pacific, and those related to Chionoecetes species in particular.

Facial fractures and associated injuries in high- versus low-energy trauma: all are not created equal

  • Hilaire, Cameron St.;Johnson, Arianne;Loseth, Caitlin;Alipour, Hamid;Faunce, Nick;Kaminski, Stephen;Sharma, Rohit
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • Introduction: Facial fractures (FFs) occur after high- and low-energy trauma; differences in associated injuries and outcomes have not been well articulated. Objective: To compare the epidemiology, management, and outcomes of patients suffering FFs from high-energy and low-energy mechanisms. Methods: We conducted a 6-year retrospective local trauma registry analysis of adults aged 18-55 years old that suffered a FF treated at the Santa Barbara Cottage Hospital. Fracture patterns, concomitant injuries, procedures, and outcomes were compared between patients that suffered a high-energy mechanism (HEM: motor vehicle crash, bicycle crash, auto versus pedestrian, falls from height > 20 feet) and those that suffered a low-energy mechanism (LEM: assault, ground-level falls) of injury. Results: FFs occurred in 123 patients, 25 from an HEM and 98 from an LEM. Rates of Le Fort (HEM 12% vs. LEM 3%, P = 0.10), mandible (HEM 20% vs. LEM 38%, P = 0.11), midface (HEM 84% vs. LEM 67%, P = 0.14), and upper face (HEM 24% vs. LEM 13%, P = 0.217) fractures did not significantly differ between the HEM and LEM groups, nor did facial operative rates (HEM 28% vs. LEM 40%, P = 0.36). FFs after an HEM event were associated with increased Injury Severity Scores (HEM 16.8 vs. LEM 7.5, P <0.001), ICU admittance (HEM 60% vs. LEM 13.3%, P <0.001), intracranial hemorrhage (ICH) (HEM 52% vs. LEM 15%, P <0.001), cervical spine fractures (HEM 12% vs. LEM 0%, P = 0.008), truncal/lower extremity injuries (HEM 60% vs. LEM 6%, P <0.001), neurosurgical procedures for the management of ICH (HEM 54% vs. LEM 36%, P = 0.003), and decreased Glasgow Coma Score on arrival (HEM 11.7 vs. LEM 14.2, P <0.001). Conclusion: FFs after HEM events were associated with severe and multifocal injuries. FFs after LEM events were associated with ICH, concussions, and cervical spine fractures. Mechanism-based screening strategies will allow for the appropriate detection and management of injuries that occur concomitant to FFs. Type of study: Retrospective cohort study. Level of evidence: Level III.

Sexual Dimorphism on the Genus Paracalanus(Copepoda: Paracalanidae) in Korean Waters

  • Cho, Kyu Hee;Lee, Won Choel;Kim, Saywa
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2003.11a
    • /
    • pp.116-120
    • /
    • 2003
  • The genus Paracalanus Boeck, 1864 dominate zooplankton communities in waters off Korean peninsula. Zooplankton samples collected from four waters (Uljin, Hadong, Youngkwang, Cheju) were sorted for specimens belonging to the genus Paracalanus. Paracalanus sp. regarded to p. paMus or p. indicus were examined. Body of male has cephalosome dorsal hump (CDH). Urosomites have four segments in female and five segments in male. In male, antennule is symmetry and fused without geniculation. The male antennule carries more aesthetascs than those in female antennule. Female P1-P4 is similar to those of male in seta and spine formular. Spinules on surface of legs are different each other. The female P5 is symmetrical, and composed of 2 segment. In male, it is aymmetrical and left leg composed of 5 segments, right leg 2-segmented. Male found patch of fine spinule on terminal inner surface of outer process on fifth segment. Sexual dimorphism appear saliently in mouth appendages. Mandible lacks of gnathobase; maxillule is apparently reduced; maxilla degrades it i]l female and remains vestiges between maxillule and maxilliped; maxilliped terminal part indistinctly articulated and carrying behind three strong plumose setae. With the absence of gnathobase in male, we conclude that male Paracalanus sp. does not feed.

  • PDF

High-Quality Depth Map Generation of Humans in Monocular Videos (단안 영상에서 인간 오브젝트의 고품질 깊이 정보 생성 방법)

  • Lee, Jungjin;Lee, Sangwoo;Park, Jongjin;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • The quality of 2D-to-3D conversion depends on the accuracy of the assigned depth to scene objects. Manual depth painting for given objects is labor intensive as each frame is painted. Specifically, a human is one of the most challenging objects for a high-quality conversion, as a human body is an articulated figure and has many degrees of freedom (DOF). In addition, various styles of clothes, accessories, and hair create a very complex silhouette around the 2D human object. We propose an efficient method to estimate visually pleasing depths of a human at every frame in a monocular video. First, a 3D template model is matched to a person in a monocular video with a small number of specified user correspondences. Our pose estimation with sequential joint angular constraints reproduces a various range of human motions (i.e., spine bending) by allowing the utilization of a fully skinned 3D model with a large number of joints and DOFs. The initial depth of the 2D object in the video is assigned from the matched results, and then propagated toward areas where the depth is missing to produce a complete depth map. For the effective handling of the complex silhouettes and appearances, we introduce a partial depth propagation method based on color segmentation to ensure the detail of the results. We compared the result and depth maps painted by experienced artists. The comparison shows that our method produces viable depth maps of humans in monocular videos efficiently.