• 제목/요약/키워드: arsenic species

검색결과 103건 처리시간 0.033초

Fixation and Leaching Characteristics of CCA- and CCFZ- Treated Domestic Softwood Species

  • Kim, Jae-Jin;Kim, Hyung-Jun;Ra, Jong-Bum;Chun, Su Kyoung;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권6호
    • /
    • pp.55-59
    • /
    • 2003
  • The fixation and leaching characteristics of chromated copper arsenate (CCA Type C) and chromium- copper-fluoride-zinc (CCFZ) in domestic softwood (Japanese red pine, Korean pine, and Japanese larch) sapwood were investigated using the expressate method to follow chromium fixation and the American Wood-Preservers' Association (AWPA) leaching procedure to determine leaching properties after fixation. The rates of fixation were affected by preservative types; CCA was fixed much faster than CCFZ for all species evaluated. There were definite differences in the fixation rates of different species, with Korean pine requiring shorter to fix than the other species evaluated. Chromium fixation was greatly enhanced by elevated temperatures, and fixation time can be estimated according to fixation temperatures applied. The percentage of arsenic and zinc leached from domestic softwoods was relatively high compared to chromium and copper, indicating that there is still a relatively high unfixed arsenic and zinc components after complete chromium fixation in CCA-and CCFZ-treated samples, respectively.

농산물 중 비소 위해평가 (Risk Assessment of Arsenic in Agricultural Products)

  • 최훈;박성국;김동술;김미혜
    • 한국환경농학회지
    • /
    • 제29권3호
    • /
    • pp.266-272
    • /
    • 2010
  • 국내 유통되고 있는 농산물에 대한 비소 함량을 확인하여 국민의 식품별 섭취량을 고려한 비소 위해성을 평가하였다. 총 비소 함량은 microwave장치를 이용해 전처리한 후 ICP/MS로 측정하였으며, 농산물 중 유기 (AsC, AsB, MMA, DMA) 및 무기비소 (As(III), As(V)) 함량을 측정하기 위해 50% 메탄올을 이용한 액액추출법과 이온교환크로마토그래피를 활용한 HPLC-ICP/MS법을 사용하였다. 비소 함량 실태조사를 위해 국내 유통 중인 농산물 20개 품목, 329건을 수거하였으며, 농산물 중 총 비소 함량은 0.001~0.718 mg/kg인 반면 무기 및 유기비소 함량은 모든 시료에서 검출한계 이하이었다. 노출 및 위해평가를 위해 농산물별 섭취를 통한 비소 노출량을 산출한 후, JECFA에서 설정한 PTWI값 대비 위해도를 평가하였으며 비소의 PTWI 는 무기비소로써 15 ${\mu}g$/kg b.w./week이다. 쌀을 제외한 농산물 섭취를 통한 총 비소 및 무기비소의 중간노출량은 0.0002~0.012, 0.0001~0.001 ${\mu}g$/kg b.w./day 이었으며, 이는 PTWI 대비 0.01~0.5%, 0.002~0.1%에 해당 하였다. 쌀을 통한 총 비소 및 무기비소 중간노출량은 0.603, 0.041 ${\mu}g$/kg b.w./day이었으며, 각각 PTWI 대비 28.1%, 1.9%에 해당하였다. 따라서, 국내 유통되는 농산물 섭취를 통한 비소의 노출량은 JECFA의 안전권고치보다 낮았으며, 우리나라 국민은 농산물에 존재하는 비소의 위해성으로부터 안전한 것으로 사료된다.

비소종(Arsenite, Arsenate, DMA)에 따른 토양독성 비교분석

  • 이우미;이주영;임승윤;정혜원;안윤주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.175-177
    • /
    • 2005
  • Effect of arsenite, arsenate and dimethylarsinic acid (DMA) on the growth of seedling plants were investigated in order to compare the toxicity of arsenic species in soil environments. Test plants were mung bean (Phaseolus radiatus), wheat (Triticum aestivum), barely (Hordeum vulgare), cucumber (Cucumis sativus L.). Seedling growth in As-contaminated soil were significantly reduced in all test species. Arsenite was more toxic than arsenate and DMA. Among the test plants, mung bean was most sensitive to arsenic, followed by cucumber, wheat, and barely.

  • PDF

인산염 농도 변화에 따른 톳(Hizikia fusiforme)의 무기비소(As (V)) 축적 및 생장률 변동 (Accumulation of inorganic arsenic, and growth rate by changing of phosphate concentration in Hizikia fusiforme)

  • 황운기;최훈;최민규;김민섭;최종우;허승;이주욱
    • 환경생물
    • /
    • 제37권2호
    • /
    • pp.189-195
    • /
    • 2019
  • 인산염 농도 변화에 따른 Hizikia fusiforme의 무기비소 축적량 및 생장률을 분석하였다. 무기비소에 14일간 노출하였을 때, 2 mg L-1의 높은 인산염 농도에서 무기비소 축적량이 증가하지 않았다. 하지만 인산염 농도가 0.02 mg L-1로 낮은 경우에 무기비소 축적량이 3배 이상 증가하였다. 또한 H. fusiforme는 인산염 농도가 낮은 경우 생장률이 14.5%, 무기비소(10 ㎍ L-1)에 노출되었을 경우 생장률이 대조구 대비 30% 감소하였다. H. fusiforme는 인산염과 무기비소를 구분하지 못하여 인산염의 농도가 낮은 경우 무기비소 축적량이 증가하게 되고, 축적된 무기비소는 광합성 저해 및 세포분열을 방해하여 생장률을 억제한다. 특히 우리나라의 대표적인 양식생물인 H. fusiforme는 다른 해조류에 비해 상대적으로 무기비소 축적량이 높다고 알려져 있기 때문에, H. fusiforme의 식품안전성을 확보하기 위해 다양한 연구가 필요하다.

비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작 (Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism)

  • 고일원;김주용;김경웅;안주성
    • 자원환경지질
    • /
    • 제38권1호
    • /
    • pp.23-31
    • /
    • 2005
  • 본 연구는 이성분계의 화학종 모델링과 삼성분계의 흡착 모델링으로부터 As(III)와 As(V)의 적철석 표면 흡착에 휴 믹산의 영향과 그 결합기작을 고찰하였다. 비소와 휴믹산의 유기 결합의 모델링은 음이온 사이의 정전기적인 반발력 과 비소의 유기 결합을 위한 결합금속의 영향을 고려한 결합 모델이 적합하였다. 삼성분계의 흡착 실험 자료와 비교 할 때 이성분계의 고유상수를 사용한 음이온 경쟁 모델이 음이온 경쟁에 따른 비소의 흡착량과 일치하였다. 반면, 비 소의 유기 결합량의 감소와 휴믹산과의 음이온 흡착경쟁이 흡착량을 감소시키기 때문에 단순합모델은 양이온 중금속 과는 반대로 모델의 편차를 보였다. 반응 기작의 관점에서 휴믹산의 공존하에 비소 유기결합 화학종과 중성화학종의 As(III) 및 음이온의 As(V)가 속착물을 형성하며, 경쟁적으로 적철석 표면으로 이동하여 흡착하게 된다.

충청남도 내 산업단지 주변에 거주하는 주민들의 요중 비소 농도 (Urinary Arsenic Concentrations among Residents in the Vicinity of a Chungcheongnam-do Province Industrial Complex Area)

  • 김희찬;노상철
    • 한국환경보건학회지
    • /
    • 제42권3호
    • /
    • pp.224-233
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate the relationship between residential surroundings, such as a power plant, steel mill and petrochemical facilities, and urinary arsenic concentrations in Chungcheongnam-do Province, Korea. Methods: Stratified by fish consumption and residential district, median and maximum block sampling was applied. A total of 346 spot urine samples were speciated for $As^{5+}$, $As^{3+}$, monomethylarsonic acid(MMA), dimethylarsonic acid (DMA) and arsenobetaine (AsB). Exposure assessment was based on questionnaires including data on sex, age, current tobacco use, fish consumption, type of water consumed, and occupational category. Results: Urinary $As^{5+}+As^{3+}+MMA+DMA$ concentrations of people living in the vicinity of a power plant ($GM=50.39{\mu}g/g$) were 61% higher than those of people living in the inland area according to median block sampling. Urinary $As^{5+}+As^{3+}+MMA+DMA+AsB$ concentrations of people living in the vicinity of industrial complex area were higher than those of people living in the inland area according to block sampling by median and maximum. Conclusion: Urinary arsenic concentrations of people living in vulnerable areas such as around industrial complexes, especially power plants, were higher than those of people living in an inland area.

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.

Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells

  • Bakhshaiesh, Tayebeh Oghabi;Armat, Marzie;Shanehbandi, Dariush;Sharifi, Simin;Baradaran, Behzad;Hejazi, Mohammad Saeed;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5191-5197
    • /
    • 2015
  • A partial response or resistance to chemotherapeutic agents is considered as a main obstacle in treatment of patients with cancer, including breast cancer. Refining taxane-based treatment procedures using adjuvant or combination treatment is a novel strategy to increase the efficiency of chemotherapy. PPM1D is a molecule activated by reactive oxygen species. whose expression is reported to modulate the recruitment of DNA repair molecules. In this study we examined the impact of arsenic trioxide on efficacy of paclitaxel-induced apoptosis in paclitaxel-resistant MCF-7 cells. We also investigated the expression of PPM1D and TP53 genes in response to this combination treatment. Resistant cells were developed from the parent MCF-7 cell line by applying increasing concentrations of paclitaxel. MTT assays were applied to determine the rate of cell survival. DAPI staining using fluorescent microscopy was employed to study apoptotic bodies. Real-time RT-PCR analysis was also applied to determine PPM1D mRNA levels. Our results revealed that combination of arsenic trioxide and paclitaxel elevates the efficacy of the latter in induction of apoptosis in MCF-7/PAC resistant cells. Applying arsenic trioxide also caused significant decreases in PPM1D mRNA levels (p<0.05). Our findings suggest that arsenic trioxide increases paclitaxel-induced apoptosis by down regulation of PPM1D expression. PPM1D dependent signaling can be considered as a novel target to improve the efficacy of chemotherapeutic agents in resistant breast cancer cells.

납과 비소에 대한 환경매체별 생태위해성평가 (Ecological Risk Assessment of Lead and Arsenic by Environmental Media)

  • 이병우;이병천;김필제;윤효정
    • 한국환경보건학회지
    • /
    • 제46권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Objectives: This study intends to evaluate the ecological risk of lead (Pb), arsenic (As), and their compounds according to the 2010 action plan on inventory and management for national priority chemicals and provide calculations of risks to the environment. By doing so, we aim to inform risk management measures for the target chemicals. Methods: We conducted species sensitivity distribution (SSD) analysis using the collected ecotoxicity data and obtained predicted no effect concentrations (PNECs) for the in-water environment using a hazardous concentration of 5% (HC5) protective of most species (95%) in the environment. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. We also calculated predicted exposure concentration (PEC) from nation-wide environmental monitoring data and then the hazard quotient (HQ) was calculated using PNEC for environmental media. Results: Ecological toxicity data was categorized into five groups and five species for Pb and four groups and four species for As. Based on the HC5 values from SSD analysis, the PNEC value for aquatic organisms was calculated as 0.40 ㎍/L for Pb and 0.13 ㎍/L for As. PNEC values for soil and sediment calculated using a partition coefficient were 77.36 and 350.50 mg/kg for Pb and 24.20 and 112.75 mg/kg for As. The analysis of national environmental monitoring data showed that PEC values in water were 0.284 ㎍/L for Pb and 0.024 ㎍/L for As, while those in soil and sediment were respectively 45.9 and 44 mg/kg for Pb, and 11.40 and 19.80 mg/kg for As. Conclusions: HQs of Pb and As were 0.70 and 0.18 in water, while those in soil and sediment were 0.59 and 0.13 for Pb and 0.47 and 0.18 for As. With HQs <1 of lead and arsenic in the environment, their ecological risk levels are found to be low.