• Title/Summary/Keyword: arsenic species

Search Result 104, Processing Time 0.018 seconds

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Ore Minerals, Fluid Inclusions, and Isotopic(S.C.O) Compositions in the Diatreme-Hosted Nokdong As-Zn Deposit, Southeastern Korea: The Character and Evolution of the Hydrothermal Fluids (다이아튜림 내에 부존한 녹동 비소-아연광상의 광석광물, 유체포유물, 유황-탄소-산소 동위원소 : 광화용액의 특성과 진화)

  • Park, Ki-Hwa;Park, Hee-In;Eastoe, Christopher J.;Choi, Suck-Won
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.131-150
    • /
    • 1991
  • The Weolseong diatreme was temporally and spatially related to the intrusion of the Gadaeri granite, and was -mineralized by meteoric aqueous fluids. In the Nokdong As-Zn deposit, pyrite, aresenopyrite and sphalerite are the most abundant sulfide minerals. They are associated with minor amount of magnetite, pyrrhotite, chalcopyrite and cassiterite, and trace amounts of Pb-Sb-Bi-Ag sulphosalts. The AsZn ore probably occurred at about $350^{\circ}C$ according to fluid inclusion and compositional data estimated from the arsenic content of arsenopyrite and iron content of sphalerite intergrown with pyrrhotite + chalcopyrite + cubanite. Heating studies of fluid inclusions in quartz indicate a temperature range between 180 and $360^{\circ}C$, and freezing data indicate a salinity range from 0.8 to 4.1 eq.wt % NaCl. The coexisting assemblage pyrite + pyrrhotite + arsenopyrite suggests that $H_2S$ was the dominate reduced sulfur species, and defines fluid parameter thus: $10^{-34.5}$ < ${\alpha}_{S_2}$ < $10^{-33}$, $10^{-11}$ < $f_{S_2}$ < $10^{-8}$, -2.4 < ${\alpha}_{S_2}$ < -1.6 atm and pH= 5.2 (sericte stable) at $300^{\circ}C$. The sulfur isotope values ranged from 1.8 to 5.5% and indicate that the sulfur in the sulfides is of magmatic in origin. The carbon isotope values range from -7.8 to -11.6%, and the oxygen isotope values from the carbonates in mineralized wall rock range from 2 to 11.4%. The oxygen isotope compositions of water coexisting with calcite require an input of meteoric water. The geochemical data indicate that the ore-forming fluid probably was generated by a variety of mechanisms, including deep circulation of meteoric water driven by magmatic heat, with possible input of magniatic water and ore component.

  • PDF

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.

A History of Termite Control and Improvements to Prevent Termites in Wooden Architectural Heritage (국내외 흰개미 방제 기술의 발달 과정과 목조건축문화재의 흰개미 피해 저감을 위한 방안)

  • LEE, Sangbin;IM, Ikgyun;KIM, Sihyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.194-215
    • /
    • 2021
  • Termites are important decomposers in the ecosystem. They are also economically significant structural pests. In this study, we reviewed the developments of termite control and recent research on termite management to provide information on the prevention and control of termites. In Korea, most of the damage to wooden historical buildings is caused by subterranean termites. Reticulitermes speratus kyushuensis is the main species, which is widely found throughout the country. In the early 1900s, inorganic insecticides, such as arsenic dust, were used for termite control. After the synthesis of chlorinated hydrocarbon pesticide in the 1940s, it was widely utilized and demonstrated high termite control efficacy. However, chlorinated hydrocarbon insecticides were later banned, disappearing from markets after reports emerged concerning environmental contamination and toxicity to humans. Therefore, the termite control industry sought a new termiticide; hence many pesticides were utilized for termite control. Organophosphate (1960s), carbamate (1970s), pyrethroid, and insect growth inhibitor (1980s) were newly synthesized and adopted. In the 1990s, the first commercial baits using chitin synthesis inhibitors (CSI) were developed, providing a means to eliminate an entire colony of subterranean termites around a structure. Many studies have been carried out on soil termiticides (liquid termiticides) and CSI baits to increase their efficacy, and different baits such as aboveground bait stations, fluid bait, and high-durability bait were also developed in the 2000s. In addition, the paradigm of termite control has shifted from localized treatments using soil termiticides to area-wide pest management using CSI baits to create termite-free zones and protect buildings over time. Termite infestations in wooden historical buildings in Korea have been reported since 1980, and considerable attention was drawn in the 1990s when several UNESCO world heritages such as the Jongmyo Shrine and the Janggyeong Panjeon Depositories of Haeinsa Temple were infested by subterranean termites. Since then, a survey of termite infestation in wooden architectural heritage has been conducted, and the National Research Institute of Cultural Heritage and Heritage Care Program regularly monitors those properties. Finally, we suggest termite management using primarily CSI baits, selective application of various soil treatments applied to the object, foundation soil treatment, research and development of durable termite baits, application of area-wide programs for wooden-building complexes, application of integrated termite management (ITM), and regular education for owners and managers to prevent and reduce termite damage.