• Title/Summary/Keyword: array optimizing

Search Result 65, Processing Time 0.025 seconds

Compositional analysis by NIRS diode array instrumentation on forage harvesters

  • Andreashaeusler, Michael Rode;Christian, Paul
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1619-1619
    • /
    • 2001
  • Ourwork aims to assess the content of dry matter, protein, cell wall parameters and water soluble carbohydrates in forages without having to handle samples, transport them to a laboratory, dry, grind and chemically analyze them. for this purpose, the concept of fresh forage analysis under field conditions by means of compact integrated NIRS InGaAs-diode array instruments on small plot harvesters is being evaluated for plant breeding trials. This work was performed with the world first commercial experimental forage plot harvester equipped with a NIRS module for the collection, compression, and scanning of forage samples (including automatic referencing and dark current measure ments). It was used for harvesting and analyzing a number of typical forage grass and forage legume plot trials. After NIRS measurements in the field each sample was again analyzed in the laboratory by means of a conventional grating spectrometer equipped with Si-and PbS-detectors. Conventional laboratory analysis of the samples was restricted to dry matter (DM) content by means of oven drying at 105. Routine chemometric procedures were then employed to assess the comparative accuracy and precision of the DM assessments in the spectral range between 950 and 1650nm by the NIRS diode array as well as by the conventional NIRS scanning instrument. The results of this study confirmed that the type of NIRS diode array instrument employed here functioned well even in rugged field operations. further refinements proved to be necessary for optimizing the automatic filling of the sample compartment to adjust for the wide variation in forage material under conditions of extremely low or high harvest yields. The error achieved in calibrating the apparatus for forages of typical DM content proved to be satisfactory (SECV < 1.0). Possibly as a consequence of higher sampling errors, its performance in atypical forages with elevated DM contents was less satisfactory. The error level obtained on the conventional grating NIR spectrometer was similar to that of the diode array instrument for both types of forage.

  • PDF

A Single-Layer Waveguide Slot Array Antenna using Diaphragms for 38 GHz Frequency Band (칸막이 구조를 이용한 단일 평면상의 38 GHz용 도파관 슬롯 배열 안테나)

  • 황지환;오이석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.721-726
    • /
    • 2003
  • This paper present a waveguide slot 16${\times}$16 assay antenna with diaphragms for 38 GHz frequency band. Diaphragms are used to control the impedance and to minimize the return loss of the structure. A 20 dB Chebyshev array of 16 waveguide slots has been designed by optimizing the positions and sizes of the diaphragms. A serial feeding system with $\pi$- and T-junction power dividers has also designed to get a 20 dB Chebyshev power distribution. A 16${\times}$16 slot array was designed for a Fixed Wireless Access System at 38 GHz frequency band, manufactured using a computer controlled milling technique, and measured for the return -19 dB and the frequency band of 740 MHz.

Microfluidic System Based High Throughput Drug Screening System for Curcumin/TRAIL Combinational Chemotherapy in Human Prostate Cancer PC3 Cells

  • An, Dami;Kim, Kwangmi;Kim, Jeongyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.355-362
    • /
    • 2014
  • We have developed a fully automated high throughput drug screening (HTDS) system based on the microfluidic cell culture array to perform combinational chemotherapy. This system has 64 individually addressable cell culture chambers where the sequential combinatorial concentrations of two different drugs can be generated by two microfluidic diffusive mixers. Each diffusive mixer has two integrated micropumps connected to the media and the drug reservoirs respectively for generating the desired combination without the need for any extra equipment to perfuse the solution such as syringe pumps. The cell array is periodically exposed to the drug combination with the programmed LabVIEW system during a couple of days without extra handling after seeding the cells into the microfluidic device and also, this device does not require the continuous generation of solutions compared to the previous systems. Therefore, the total amount of drug being consumed per experiment is less than a few hundred micro liters in each reservoir. The utility of this system is demonstrated through investigating the viability of the prostate cancer PC3 cell line with the combinational treatments of curcumin and tumor necrosis factor-alpha related apoptosis inducing ligand (TRAIL). Our results suggest that the system can be used for screening and optimizing drug combination with a small amount of reagent for combinatorial chemotherapy against cancer cells.

Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design (다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2021
  • This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Impact of aperture-thickness on the real-time imaging characteristics of coded-aperture gamma cameras

  • Park, Seoryeong;Boo, Jiwhan;Hammig, Mark;Jeong, Manhee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1266-1276
    • /
    • 2021
  • The mask parameters of a coded aperture are critical design features when optimizing the performance of a gamma-ray camera. In this paper, experiments and Monte Carlo simulations were performed to derive the minimum detectable activity (MDA) when one seeks a real-time imaging capability. First, the impact of the thickness of the modified uniformly redundant array (MURA) mask on the image quality is quantified, and the imaging of point, line, and surface radiation sources is demonstrated using both cross-correlation (CC) and maximum likelihood expectation maximization (MLEM) methods. Second, the minimum detectable activity is also derived for real-time imaging by altering the factors used in the image quality assessment, consisting of the peak-to-noise ratio (PSNR), the normalized mean square error (NMSE), the spatial resolution (full width at half maximum; FWHM), and the structural similarity (SSIM), all evaluated as a function of energy and mask thickness. Sufficiently sharp images were reconstructed when the mask thickness was approximately 2 cm for a source energy between 30 keV and 1.5 MeV and the minimum detectable activity for real-time imaging was 23.7 MBq at 1 m distance for a 1 s collection time.

Study on 2×2 Subarray Antenna for Implementation of VHF Band Active Electronically Scanned Array (VHF 대역 능동 위상 배열안테나 구현을 위한 2×2 부배열 안테나 설계에 관한 연구)

  • Kim, Sungpeel;Han, Junyong;Jang, Younhui;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.473-476
    • /
    • 2018
  • Herein, a $2{\times}2$ subarray antenna is designed to implement a VHF band active electronically scanned array. The Yagi-Uda antenna is used as a radiating element. The bandwidth enhancement and miniaturization of the Yagi-Uda antenna are achieved by optimizing the diameter of a driven element and the length of a director. In addition, the grid reflector is utilized to improve the front-to-back ratio(FBR) and to reduce both the wind resistance and overall system weight. The fabricated $2{\times}2$ subarray antenna fully covers the VHF target band($0.98{\sim}1.02f_c$). The measured maximum gain is 10.61 dBi and the FBR is larger than 26 dB.

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

Optimization of Turbofan Engine Design Point by using Seven Level Orthogonal Array (7수준 직교배열을 적용한 터보팬 엔진 설계점 최적화)

  • Kim, Myungho;Kim, Youil;Lee, Kwangki;Hwang, Kiyoung;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.10-15
    • /
    • 2013
  • For design optimization, engineers should require the accurate information of design space and then explore the design space and carry out optimization. Recently, the total design framework, based on design of experiments and optimization, is widely used in industry areas to explore the design space above all. For optimizing turbofan engine design point, the response surface model is constructed by using the 7 level orthogonal array which satisfies the statistical uniformity and orthogonality and gets the dense design space information. The multi-objective genetic algorithm is used to find the optimal solution within the given constraints for finding global optimal one in response surface model. The optimal solution from response surface model is verified with GasTurb simulation result.

A study of the inset-fed 4x4 microstrip patch array antenna for X-band applications (X-band 대역용 4x4 인셋 급전 마이크로스트립 패치 배열 안테나 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 2024
  • This paper details research on the optimized design and fabrication of a 4x4 microstrip array antenna intended for X-Band applications. The study focuses on achieving the desired resonance frequency and gain by modifying the microstrip patch and array antenna parameters, including substrate type and patch size. It presents results from designing and fabricating a 4x4 array antenna with optimum substrate materials to enhance X-Band resonance characteristics and gain. The antenna dimensions are 10mm(W)x7.4mm(L)x 0.79mm(H), with an Rogers RO 4350B dielectric substrate (εr=3.54) and an inset-fed feeding method to minimize antenna size. Both the single patch and 4x4 array antennas demonstrated stable SWR (<1.5) and a gain of 18.5dBi at the target frequency of 10.3GHz in simulations. The fabricated antenna showed performance consistent with simulation results. This antenna design is suitable for X-Band applications, including military, satellite communications, and biomedical fields.

Recurrent carpal tunnel syndrome associated with extension of flexor digitorum muscle bellies into the carpal tunnel: A case series

  • Castillo, Rochelle;Sheth, Khushboo;Babigian, Alan;Scola, Christopher
    • Archives of Plastic Surgery
    • /
    • v.45 no.5
    • /
    • pp.474-478
    • /
    • 2018
  • While the success or failure of carpal tunnel release ultimately depends on the interplay of a wide array of factors, a broad understanding of the normal anatomy of the carpal tunnel accompanied by awareness of the possible variations of the individual structures that make up its contents is crucial to optimizing surgical outcomes. While anatomic variants such as extension of the flexor digitorum muscle bellies have been described as a cause of primary carpal tunnel syndrome (CTS), there have been no reports depicting its association with recurrent CTS following initially successful carpal tunnel release, a finding with potentially significant prognostic implications that can aid in operative planning. In such cases where muscle extension is identified preoperatively, careful debulking of the muscle belly may be beneficial in improving long-term surgical outcomes.